00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023 #include "common.h"
00024 #include "aes.h"
00025
00026 typedef struct AVAES{
00027
00028
00029 uint8_t round_key[15][4][4];
00030 uint8_t state[2][4][4];
00031 int rounds;
00032 }AVAES;
00033
00034 const int av_aes_size= sizeof(AVAES);
00035
00036 static const uint8_t rcon[10] = {
00037 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
00038 };
00039
00040 static uint8_t sbox[256];
00041 static uint8_t inv_sbox[256];
00042 #if CONFIG_SMALL
00043 static uint32_t enc_multbl[1][256];
00044 static uint32_t dec_multbl[1][256];
00045 #else
00046 static uint32_t enc_multbl[4][256];
00047 static uint32_t dec_multbl[4][256];
00048 #endif
00049
00050 static inline void addkey(uint64_t dst[2], const uint64_t src[2], const uint64_t round_key[2]){
00051 dst[0] = src[0] ^ round_key[0];
00052 dst[1] = src[1] ^ round_key[1];
00053 }
00054
00055 static void subshift(uint8_t s0[2][16], int s, const uint8_t *box){
00056 uint8_t (*s1)[16]= s0[0] - s;
00057 uint8_t (*s3)[16]= s0[0] + s;
00058 s0[0][0]=box[s0[1][ 0]]; s0[0][ 4]=box[s0[1][ 4]]; s0[0][ 8]=box[s0[1][ 8]]; s0[0][12]=box[s0[1][12]];
00059 s1[0][3]=box[s1[1][ 7]]; s1[0][ 7]=box[s1[1][11]]; s1[0][11]=box[s1[1][15]]; s1[0][15]=box[s1[1][ 3]];
00060 s0[0][2]=box[s0[1][10]]; s0[0][10]=box[s0[1][ 2]]; s0[0][ 6]=box[s0[1][14]]; s0[0][14]=box[s0[1][ 6]];
00061 s3[0][1]=box[s3[1][13]]; s3[0][13]=box[s3[1][ 9]]; s3[0][ 9]=box[s3[1][ 5]]; s3[0][ 5]=box[s3[1][ 1]];
00062 }
00063
00064 static inline int mix_core(uint32_t multbl[4][256], int a, int b, int c, int d){
00065 #if CONFIG_SMALL
00066 #define ROT(x,s) ((x<<s)|(x>>(32-s)))
00067 return multbl[0][a] ^ ROT(multbl[0][b], 8) ^ ROT(multbl[0][c], 16) ^ ROT(multbl[0][d], 24);
00068 #else
00069 return multbl[0][a] ^ multbl[1][b] ^ multbl[2][c] ^ multbl[3][d];
00070 #endif
00071 }
00072
00073 static inline void mix(uint8_t state[2][4][4], uint32_t multbl[4][256], int s1, int s3){
00074 ((uint32_t *)(state))[0] = mix_core(multbl, state[1][0][0], state[1][s1 ][1], state[1][2][2], state[1][s3 ][3]);
00075 ((uint32_t *)(state))[1] = mix_core(multbl, state[1][1][0], state[1][s3-1][1], state[1][3][2], state[1][s1-1][3]);
00076 ((uint32_t *)(state))[2] = mix_core(multbl, state[1][2][0], state[1][s3 ][1], state[1][0][2], state[1][s1 ][3]);
00077 ((uint32_t *)(state))[3] = mix_core(multbl, state[1][3][0], state[1][s1-1][1], state[1][1][2], state[1][s3-1][3]);
00078 }
00079
00080 static inline void crypt(AVAES *a, int s, const uint8_t *sbox, const uint32_t *multbl){
00081 int r;
00082
00083 for(r=a->rounds-1; r>0; r--){
00084 mix(a->state, multbl, 3-s, 1+s);
00085 addkey(a->state[1], a->state[0], a->round_key[r]);
00086 }
00087 subshift(a->state[0][0], s, sbox);
00088 }
00089
00090 void av_aes_crypt(AVAES *a, uint8_t *dst, const uint8_t *src, int count, uint8_t *iv, int decrypt){
00091 while(count--){
00092 addkey(a->state[1], src, a->round_key[a->rounds]);
00093 if(decrypt) {
00094 crypt(a, 0, inv_sbox, dec_multbl);
00095 if(iv){
00096 addkey(a->state[0], a->state[0], iv);
00097 memcpy(iv, src, 16);
00098 }
00099 addkey(dst, a->state[0], a->round_key[0]);
00100 }else{
00101 if(iv) addkey(a->state[1], a->state[1], iv);
00102 crypt(a, 2, sbox, enc_multbl);
00103 addkey(dst, a->state[0], a->round_key[0]);
00104 if(iv) memcpy(iv, dst, 16);
00105 }
00106 src+=16;
00107 dst+=16;
00108 }
00109 }
00110
00111 static void init_multbl2(uint8_t tbl[1024], const int c[4], const uint8_t *log8, const uint8_t *alog8, const uint8_t *sbox){
00112 int i, j;
00113 for(i=0; i<1024; i++){
00114 int x= sbox[i>>2];
00115 if(x) tbl[i]= alog8[ log8[x] + log8[c[i&3]] ];
00116 }
00117 #if !CONFIG_SMALL
00118 for(j=256; j<1024; j++)
00119 for(i=0; i<4; i++)
00120 tbl[4*j+i]= tbl[4*j + ((i-1)&3) - 1024];
00121 #endif
00122 }
00123
00124
00125 int av_aes_init(AVAES *a, const uint8_t *key, int key_bits, int decrypt) {
00126 int i, j, t, rconpointer = 0;
00127 uint8_t tk[8][4];
00128 int KC= key_bits>>5;
00129 int rounds= KC + 6;
00130 uint8_t log8[256];
00131 uint8_t alog8[512];
00132
00133 if(!enc_multbl[0][sizeof(enc_multbl)/sizeof(enc_multbl[0][0])-1]){
00134 j=1;
00135 for(i=0; i<255; i++){
00136 alog8[i]=
00137 alog8[i+255]= j;
00138 log8[j]= i;
00139 j^= j+j;
00140 if(j>255) j^= 0x11B;
00141 }
00142 for(i=0; i<256; i++){
00143 j= i ? alog8[255-log8[i]] : 0;
00144 j ^= (j<<1) ^ (j<<2) ^ (j<<3) ^ (j<<4);
00145 j = (j ^ (j>>8) ^ 99) & 255;
00146 inv_sbox[j]= i;
00147 sbox [i]= j;
00148 }
00149 init_multbl2(dec_multbl[0], (const int[4]){0xe, 0x9, 0xd, 0xb}, log8, alog8, inv_sbox);
00150 init_multbl2(enc_multbl[0], (const int[4]){0x2, 0x1, 0x1, 0x3}, log8, alog8, sbox);
00151 }
00152
00153 if(key_bits!=128 && key_bits!=192 && key_bits!=256)
00154 return -1;
00155
00156 a->rounds= rounds;
00157
00158 memcpy(tk, key, KC*4);
00159
00160 for(t= 0; t < (rounds+1)*16;) {
00161 memcpy(a->round_key[0][0]+t, tk, KC*4);
00162 t+= KC*4;
00163
00164 for(i = 0; i < 4; i++)
00165 tk[0][i] ^= sbox[tk[KC-1][(i+1)&3]];
00166 tk[0][0] ^= rcon[rconpointer++];
00167
00168 for(j = 1; j < KC; j++){
00169 if(KC != 8 || j != KC>>1)
00170 for(i = 0; i < 4; i++) tk[j][i] ^= tk[j-1][i];
00171 else
00172 for(i = 0; i < 4; i++) tk[j][i] ^= sbox[tk[j-1][i]];
00173 }
00174 }
00175
00176 if(decrypt){
00177 for(i=1; i<rounds; i++){
00178 uint8_t tmp[3][16];
00179 memcpy(tmp[2], a->round_key[i][0], 16);
00180 subshift(tmp[1], 0, sbox);
00181 mix(tmp, dec_multbl, 1, 3);
00182 memcpy(a->round_key[i][0], tmp[0], 16);
00183 }
00184 }else{
00185 for(i=0; i<(rounds+1)>>1; i++){
00186 for(j=0; j<16; j++)
00187 FFSWAP(int, a->round_key[i][0][j], a->round_key[rounds-i][0][j]);
00188 }
00189 }
00190
00191 return 0;
00192 }
00193
00194 #ifdef TEST
00195 #include "log.h"
00196
00197 #undef random
00198
00199 int main(void){
00200 int i,j;
00201 AVAES ae, ad, b;
00202 uint8_t rkey[2][16]= {
00203 {0},
00204 {0x10, 0xa5, 0x88, 0x69, 0xd7, 0x4b, 0xe5, 0xa3, 0x74, 0xcf, 0x86, 0x7c, 0xfb, 0x47, 0x38, 0x59}};
00205 uint8_t pt[16], rpt[2][16]= {
00206 {0x6a, 0x84, 0x86, 0x7c, 0xd7, 0x7e, 0x12, 0xad, 0x07, 0xea, 0x1b, 0xe8, 0x95, 0xc5, 0x3f, 0xa3},
00207 {0}};
00208 uint8_t rct[2][16]= {
00209 {0x73, 0x22, 0x81, 0xc0, 0xa0, 0xaa, 0xb8, 0xf7, 0xa5, 0x4a, 0x0c, 0x67, 0xa0, 0xc4, 0x5e, 0xcf},
00210 {0x6d, 0x25, 0x1e, 0x69, 0x44, 0xb0, 0x51, 0xe0, 0x4e, 0xaa, 0x6f, 0xb4, 0xdb, 0xf7, 0x84, 0x65}};
00211 uint8_t temp[16];
00212
00213 av_aes_init(&ae, "PI=3.141592654..", 128, 0);
00214 av_aes_init(&ad, "PI=3.141592654..", 128, 1);
00215 av_log_level= AV_LOG_DEBUG;
00216
00217 for(i=0; i<2; i++){
00218 av_aes_init(&b, rkey[i], 128, 1);
00219 av_aes_crypt(&b, temp, rct[i], 1, NULL, 1);
00220 for(j=0; j<16; j++)
00221 if(rpt[i][j] != temp[j])
00222 av_log(NULL, AV_LOG_ERROR, "%d %02X %02X\n", j, rpt[i][j], temp[j]);
00223 }
00224
00225 for(i=0; i<10000; i++){
00226 for(j=0; j<16; j++){
00227 pt[j]= random();
00228 }
00229 {START_TIMER
00230 av_aes_crypt(&ae, temp, pt, 1, NULL, 0);
00231 if(!(i&(i-1)))
00232 av_log(NULL, AV_LOG_ERROR, "%02X %02X %02X %02X\n", temp[0], temp[5], temp[10], temp[15]);
00233 av_aes_crypt(&ad, temp, temp, 1, NULL, 1);
00234 STOP_TIMER("aes")}
00235 for(j=0; j<16; j++){
00236 if(pt[j] != temp[j]){
00237 av_log(NULL, AV_LOG_ERROR, "%d %d %02X %02X\n", i,j, pt[j], temp[j]);
00238 }
00239 }
00240 }
00241 return 0;
00242 }
00243 #endif