00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023 #define ALT_BITSTREAM_READER_LE
00024 #include "avcodec.h"
00025 #include "dsputil.h"
00026 #include "get_bits.h"
00027 #include "bytestream.h"
00028
00034 #define BLOCKS_PER_LOOP 4608
00035 #define MAX_CHANNELS 2
00036 #define MAX_BYTESPERSAMPLE 3
00037
00038 #define APE_FRAMECODE_MONO_SILENCE 1
00039 #define APE_FRAMECODE_STEREO_SILENCE 3
00040 #define APE_FRAMECODE_PSEUDO_STEREO 4
00041
00042 #define HISTORY_SIZE 512
00043 #define PREDICTOR_ORDER 8
00044
00045 #define PREDICTOR_SIZE 50
00046
00047 #define YDELAYA (18 + PREDICTOR_ORDER*4)
00048 #define YDELAYB (18 + PREDICTOR_ORDER*3)
00049 #define XDELAYA (18 + PREDICTOR_ORDER*2)
00050 #define XDELAYB (18 + PREDICTOR_ORDER)
00051
00052 #define YADAPTCOEFFSA 18
00053 #define XADAPTCOEFFSA 14
00054 #define YADAPTCOEFFSB 10
00055 #define XADAPTCOEFFSB 5
00056
00061 enum APECompressionLevel {
00062 COMPRESSION_LEVEL_FAST = 1000,
00063 COMPRESSION_LEVEL_NORMAL = 2000,
00064 COMPRESSION_LEVEL_HIGH = 3000,
00065 COMPRESSION_LEVEL_EXTRA_HIGH = 4000,
00066 COMPRESSION_LEVEL_INSANE = 5000
00067 };
00070 #define APE_FILTER_LEVELS 3
00071
00073 static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
00074 { 0, 0, 0 },
00075 { 16, 0, 0 },
00076 { 64, 0, 0 },
00077 { 32, 256, 0 },
00078 { 16, 256, 1280 }
00079 };
00080
00082 static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = {
00083 { 0, 0, 0 },
00084 { 11, 0, 0 },
00085 { 11, 0, 0 },
00086 { 10, 13, 0 },
00087 { 11, 13, 15 }
00088 };
00089
00090
00092 typedef struct APEFilter {
00093 int16_t *coeffs;
00094 int16_t *adaptcoeffs;
00095 int16_t *historybuffer;
00096 int16_t *delay;
00097
00098 int avg;
00099 } APEFilter;
00100
00101 typedef struct APERice {
00102 uint32_t k;
00103 uint32_t ksum;
00104 } APERice;
00105
00106 typedef struct APERangecoder {
00107 uint32_t low;
00108 uint32_t range;
00109 uint32_t help;
00110 unsigned int buffer;
00111 } APERangecoder;
00112
00114 typedef struct APEPredictor {
00115 int32_t *buf;
00116
00117 int32_t lastA[2];
00118
00119 int32_t filterA[2];
00120 int32_t filterB[2];
00121
00122 int32_t coeffsA[2][4];
00123 int32_t coeffsB[2][5];
00124 int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE];
00125 } APEPredictor;
00126
00128 typedef struct APEContext {
00129 AVCodecContext *avctx;
00130 DSPContext dsp;
00131 int channels;
00132 int samples;
00133
00134 int fileversion;
00135 int compression_level;
00136 int fset;
00137 int flags;
00138
00139 uint32_t CRC;
00140 int frameflags;
00141 int currentframeblocks;
00142 int blocksdecoded;
00143 APEPredictor predictor;
00144
00145 int32_t decoded0[BLOCKS_PER_LOOP];
00146 int32_t decoded1[BLOCKS_PER_LOOP];
00147
00148 int16_t* filterbuf[APE_FILTER_LEVELS];
00149
00150 APERangecoder rc;
00151 APERice riceX;
00152 APERice riceY;
00153 APEFilter filters[APE_FILTER_LEVELS][2];
00154
00155 uint8_t *data;
00156 uint8_t *data_end;
00157 const uint8_t *ptr;
00158 const uint8_t *last_ptr;
00159
00160 int error;
00161 } APEContext;
00162
00163
00164
00165 static av_cold int ape_decode_init(AVCodecContext * avctx)
00166 {
00167 APEContext *s = avctx->priv_data;
00168 int i;
00169
00170 if (avctx->extradata_size != 6) {
00171 av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
00172 return -1;
00173 }
00174 if (avctx->bits_per_coded_sample != 16) {
00175 av_log(avctx, AV_LOG_ERROR, "Only 16-bit samples are supported\n");
00176 return -1;
00177 }
00178 if (avctx->channels > 2) {
00179 av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
00180 return -1;
00181 }
00182 s->avctx = avctx;
00183 s->channels = avctx->channels;
00184 s->fileversion = AV_RL16(avctx->extradata);
00185 s->compression_level = AV_RL16(avctx->extradata + 2);
00186 s->flags = AV_RL16(avctx->extradata + 4);
00187
00188 av_log(avctx, AV_LOG_DEBUG, "Compression Level: %d - Flags: %d\n", s->compression_level, s->flags);
00189 if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE) {
00190 av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n", s->compression_level);
00191 return -1;
00192 }
00193 s->fset = s->compression_level / 1000 - 1;
00194 for (i = 0; i < APE_FILTER_LEVELS; i++) {
00195 if (!ape_filter_orders[s->fset][i])
00196 break;
00197 s->filterbuf[i] = av_malloc((ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4);
00198 }
00199
00200 dsputil_init(&s->dsp, avctx);
00201 avctx->sample_fmt = SAMPLE_FMT_S16;
00202 avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
00203 return 0;
00204 }
00205
00206 static av_cold int ape_decode_close(AVCodecContext * avctx)
00207 {
00208 APEContext *s = avctx->priv_data;
00209 int i;
00210
00211 for (i = 0; i < APE_FILTER_LEVELS; i++)
00212 av_freep(&s->filterbuf[i]);
00213
00214 av_freep(&s->data);
00215 return 0;
00216 }
00217
00223 #define CODE_BITS 32
00224 #define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1))
00225 #define SHIFT_BITS (CODE_BITS - 9)
00226 #define EXTRA_BITS ((CODE_BITS-2) % 8 + 1)
00227 #define BOTTOM_VALUE (TOP_VALUE >> 8)
00228
00230 static inline void range_start_decoding(APEContext * ctx)
00231 {
00232 ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
00233 ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS);
00234 ctx->rc.range = (uint32_t) 1 << EXTRA_BITS;
00235 }
00236
00238 static inline void range_dec_normalize(APEContext * ctx)
00239 {
00240 while (ctx->rc.range <= BOTTOM_VALUE) {
00241 ctx->rc.buffer <<= 8;
00242 if(ctx->ptr < ctx->data_end)
00243 ctx->rc.buffer += *ctx->ptr;
00244 ctx->ptr++;
00245 ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF);
00246 ctx->rc.range <<= 8;
00247 }
00248 }
00249
00256 static inline int range_decode_culfreq(APEContext * ctx, int tot_f)
00257 {
00258 range_dec_normalize(ctx);
00259 ctx->rc.help = ctx->rc.range / tot_f;
00260 return ctx->rc.low / ctx->rc.help;
00261 }
00262
00268 static inline int range_decode_culshift(APEContext * ctx, int shift)
00269 {
00270 range_dec_normalize(ctx);
00271 ctx->rc.help = ctx->rc.range >> shift;
00272 return ctx->rc.low / ctx->rc.help;
00273 }
00274
00275
00282 static inline void range_decode_update(APEContext * ctx, int sy_f, int lt_f)
00283 {
00284 ctx->rc.low -= ctx->rc.help * lt_f;
00285 ctx->rc.range = ctx->rc.help * sy_f;
00286 }
00287
00289 static inline int range_decode_bits(APEContext * ctx, int n)
00290 {
00291 int sym = range_decode_culshift(ctx, n);
00292 range_decode_update(ctx, 1, sym);
00293 return sym;
00294 }
00295
00296
00297 #define MODEL_ELEMENTS 64
00298
00302 static const uint16_t counts_3970[22] = {
00303 0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
00304 62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
00305 65450, 65469, 65480, 65487, 65491, 65493,
00306 };
00307
00311 static const uint16_t counts_diff_3970[21] = {
00312 14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
00313 1104, 677, 415, 248, 150, 89, 54, 31,
00314 19, 11, 7, 4, 2,
00315 };
00316
00320 static const uint16_t counts_3980[22] = {
00321 0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
00322 64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
00323 65485, 65488, 65490, 65491, 65492, 65493,
00324 };
00325
00329 static const uint16_t counts_diff_3980[21] = {
00330 19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
00331 261, 119, 65, 31, 19, 10, 6, 3,
00332 3, 2, 1, 1, 1,
00333 };
00334
00341 static inline int range_get_symbol(APEContext * ctx,
00342 const uint16_t counts[],
00343 const uint16_t counts_diff[])
00344 {
00345 int symbol, cf;
00346
00347 cf = range_decode_culshift(ctx, 16);
00348
00349 if(cf > 65492){
00350 symbol= cf - 65535 + 63;
00351 range_decode_update(ctx, 1, cf);
00352 if(cf > 65535)
00353 ctx->error=1;
00354 return symbol;
00355 }
00356
00357 for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
00358
00359 range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
00360
00361 return symbol;
00362 }
00364
00365 static inline void update_rice(APERice *rice, int x)
00366 {
00367 int lim = rice->k ? (1 << (rice->k + 4)) : 0;
00368 rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
00369
00370 if (rice->ksum < lim)
00371 rice->k--;
00372 else if (rice->ksum >= (1 << (rice->k + 5)))
00373 rice->k++;
00374 }
00375
00376 static inline int ape_decode_value(APEContext * ctx, APERice *rice)
00377 {
00378 int x, overflow;
00379
00380 if (ctx->fileversion < 3990) {
00381 int tmpk;
00382
00383 overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970);
00384
00385 if (overflow == (MODEL_ELEMENTS - 1)) {
00386 tmpk = range_decode_bits(ctx, 5);
00387 overflow = 0;
00388 } else
00389 tmpk = (rice->k < 1) ? 0 : rice->k - 1;
00390
00391 if (tmpk <= 16)
00392 x = range_decode_bits(ctx, tmpk);
00393 else {
00394 x = range_decode_bits(ctx, 16);
00395 x |= (range_decode_bits(ctx, tmpk - 16) << 16);
00396 }
00397 x += overflow << tmpk;
00398 } else {
00399 int base, pivot;
00400
00401 pivot = rice->ksum >> 5;
00402 if (pivot == 0)
00403 pivot = 1;
00404
00405 overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980);
00406
00407 if (overflow == (MODEL_ELEMENTS - 1)) {
00408 overflow = range_decode_bits(ctx, 16) << 16;
00409 overflow |= range_decode_bits(ctx, 16);
00410 }
00411
00412 if (pivot < 0x10000) {
00413 base = range_decode_culfreq(ctx, pivot);
00414 range_decode_update(ctx, 1, base);
00415 } else {
00416 int base_hi = pivot, base_lo;
00417 int bbits = 0;
00418
00419 while (base_hi & ~0xFFFF) {
00420 base_hi >>= 1;
00421 bbits++;
00422 }
00423 base_hi = range_decode_culfreq(ctx, base_hi + 1);
00424 range_decode_update(ctx, 1, base_hi);
00425 base_lo = range_decode_culfreq(ctx, 1 << bbits);
00426 range_decode_update(ctx, 1, base_lo);
00427
00428 base = (base_hi << bbits) + base_lo;
00429 }
00430
00431 x = base + overflow * pivot;
00432 }
00433
00434 update_rice(rice, x);
00435
00436
00437 if (x & 1)
00438 return (x >> 1) + 1;
00439 else
00440 return -(x >> 1);
00441 }
00442
00443 static void entropy_decode(APEContext * ctx, int blockstodecode, int stereo)
00444 {
00445 int32_t *decoded0 = ctx->decoded0;
00446 int32_t *decoded1 = ctx->decoded1;
00447
00448 ctx->blocksdecoded = blockstodecode;
00449
00450 if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
00451
00452 memset(decoded0, 0, blockstodecode * sizeof(int32_t));
00453 memset(decoded1, 0, blockstodecode * sizeof(int32_t));
00454 } else {
00455 while (blockstodecode--) {
00456 *decoded0++ = ape_decode_value(ctx, &ctx->riceY);
00457 if (stereo)
00458 *decoded1++ = ape_decode_value(ctx, &ctx->riceX);
00459 }
00460 }
00461
00462 if (ctx->blocksdecoded == ctx->currentframeblocks)
00463 range_dec_normalize(ctx);
00464 }
00465
00466 static void init_entropy_decoder(APEContext * ctx)
00467 {
00468
00469 ctx->CRC = bytestream_get_be32(&ctx->ptr);
00470
00471
00472 ctx->frameflags = 0;
00473 if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
00474 ctx->CRC &= ~0x80000000;
00475
00476 ctx->frameflags = bytestream_get_be32(&ctx->ptr);
00477 }
00478
00479
00480 ctx->blocksdecoded = 0;
00481
00482
00483 ctx->riceX.k = 10;
00484 ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
00485 ctx->riceY.k = 10;
00486 ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
00487
00488
00489 ctx->ptr++;
00490
00491 range_start_decoding(ctx);
00492 }
00493
00494 static const int32_t initial_coeffs[4] = {
00495 360, 317, -109, 98
00496 };
00497
00498 static void init_predictor_decoder(APEContext * ctx)
00499 {
00500 APEPredictor *p = &ctx->predictor;
00501
00502
00503 memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(int32_t));
00504 p->buf = p->historybuffer;
00505
00506
00507 memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs));
00508 memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs));
00509 memset(p->coeffsB, 0, sizeof(p->coeffsB));
00510
00511 p->filterA[0] = p->filterA[1] = 0;
00512 p->filterB[0] = p->filterB[1] = 0;
00513 p->lastA[0] = p->lastA[1] = 0;
00514 }
00515
00517 static inline int APESIGN(int32_t x) {
00518 return (x < 0) - (x > 0);
00519 }
00520
00521 static av_always_inline int predictor_update_filter(APEPredictor *p, const int decoded, const int filter, const int delayA, const int delayB, const int adaptA, const int adaptB)
00522 {
00523 int32_t predictionA, predictionB, sign;
00524
00525 p->buf[delayA] = p->lastA[filter];
00526 p->buf[adaptA] = APESIGN(p->buf[delayA]);
00527 p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1];
00528 p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
00529
00530 predictionA = p->buf[delayA ] * p->coeffsA[filter][0] +
00531 p->buf[delayA - 1] * p->coeffsA[filter][1] +
00532 p->buf[delayA - 2] * p->coeffsA[filter][2] +
00533 p->buf[delayA - 3] * p->coeffsA[filter][3];
00534
00535
00536 p->buf[delayB] = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5);
00537 p->buf[adaptB] = APESIGN(p->buf[delayB]);
00538 p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1];
00539 p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
00540 p->filterB[filter] = p->filterA[filter ^ 1];
00541
00542 predictionB = p->buf[delayB ] * p->coeffsB[filter][0] +
00543 p->buf[delayB - 1] * p->coeffsB[filter][1] +
00544 p->buf[delayB - 2] * p->coeffsB[filter][2] +
00545 p->buf[delayB - 3] * p->coeffsB[filter][3] +
00546 p->buf[delayB - 4] * p->coeffsB[filter][4];
00547
00548 p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10);
00549 p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
00550
00551 sign = APESIGN(decoded);
00552 p->coeffsA[filter][0] += p->buf[adaptA ] * sign;
00553 p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign;
00554 p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign;
00555 p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign;
00556 p->coeffsB[filter][0] += p->buf[adaptB ] * sign;
00557 p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign;
00558 p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign;
00559 p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign;
00560 p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign;
00561
00562 return p->filterA[filter];
00563 }
00564
00565 static void predictor_decode_stereo(APEContext * ctx, int count)
00566 {
00567 APEPredictor *p = &ctx->predictor;
00568 int32_t *decoded0 = ctx->decoded0;
00569 int32_t *decoded1 = ctx->decoded1;
00570
00571 while (count--) {
00572
00573 *decoded0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB, YADAPTCOEFFSA, YADAPTCOEFFSB);
00574 decoded0++;
00575 *decoded1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB, XADAPTCOEFFSA, XADAPTCOEFFSB);
00576 decoded1++;
00577
00578
00579 p->buf++;
00580
00581
00582 if (p->buf == p->historybuffer + HISTORY_SIZE) {
00583 memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
00584 p->buf = p->historybuffer;
00585 }
00586 }
00587 }
00588
00589 static void predictor_decode_mono(APEContext * ctx, int count)
00590 {
00591 APEPredictor *p = &ctx->predictor;
00592 int32_t *decoded0 = ctx->decoded0;
00593 int32_t predictionA, currentA, A, sign;
00594
00595 currentA = p->lastA[0];
00596
00597 while (count--) {
00598 A = *decoded0;
00599
00600 p->buf[YDELAYA] = currentA;
00601 p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1];
00602
00603 predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] +
00604 p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
00605 p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
00606 p->buf[YDELAYA - 3] * p->coeffsA[0][3];
00607
00608 currentA = A + (predictionA >> 10);
00609
00610 p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]);
00611 p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
00612
00613 sign = APESIGN(A);
00614 p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ] * sign;
00615 p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign;
00616 p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign;
00617 p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign;
00618
00619 p->buf++;
00620
00621
00622 if (p->buf == p->historybuffer + HISTORY_SIZE) {
00623 memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
00624 p->buf = p->historybuffer;
00625 }
00626
00627 p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5);
00628 *(decoded0++) = p->filterA[0];
00629 }
00630
00631 p->lastA[0] = currentA;
00632 }
00633
00634 static void do_init_filter(APEFilter *f, int16_t * buf, int order)
00635 {
00636 f->coeffs = buf;
00637 f->historybuffer = buf + order;
00638 f->delay = f->historybuffer + order * 2;
00639 f->adaptcoeffs = f->historybuffer + order;
00640
00641 memset(f->historybuffer, 0, (order * 2) * sizeof(int16_t));
00642 memset(f->coeffs, 0, order * sizeof(int16_t));
00643 f->avg = 0;
00644 }
00645
00646 static void init_filter(APEContext * ctx, APEFilter *f, int16_t * buf, int order)
00647 {
00648 do_init_filter(&f[0], buf, order);
00649 do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
00650 }
00651
00652 static void do_apply_filter(APEContext * ctx, int version, APEFilter *f, int32_t *data, int count, int order, int fracbits)
00653 {
00654 int res;
00655 int absres;
00656
00657 while (count--) {
00658
00659 res = ctx->dsp.scalarproduct_and_madd_int16(f->coeffs, f->delay - order, f->adaptcoeffs - order, order, APESIGN(*data));
00660 res = (res + (1 << (fracbits - 1))) >> fracbits;
00661 res += *data;
00662 *data++ = res;
00663
00664
00665 *f->delay++ = av_clip_int16(res);
00666
00667 if (version < 3980) {
00668
00669 f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
00670 f->adaptcoeffs[-4] >>= 1;
00671 f->adaptcoeffs[-8] >>= 1;
00672 } else {
00673
00674
00675
00676 absres = FFABS(res);
00677 if (absres)
00678 *f->adaptcoeffs = ((res & (1<<31)) - (1<<30)) >> (25 + (absres <= f->avg*3) + (absres <= f->avg*4/3));
00679 else
00680 *f->adaptcoeffs = 0;
00681
00682 f->avg += (absres - f->avg) / 16;
00683
00684 f->adaptcoeffs[-1] >>= 1;
00685 f->adaptcoeffs[-2] >>= 1;
00686 f->adaptcoeffs[-8] >>= 1;
00687 }
00688
00689 f->adaptcoeffs++;
00690
00691
00692 if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
00693 memmove(f->historybuffer, f->delay - (order * 2),
00694 (order * 2) * sizeof(int16_t));
00695 f->delay = f->historybuffer + order * 2;
00696 f->adaptcoeffs = f->historybuffer + order;
00697 }
00698 }
00699 }
00700
00701 static void apply_filter(APEContext * ctx, APEFilter *f,
00702 int32_t * data0, int32_t * data1,
00703 int count, int order, int fracbits)
00704 {
00705 do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits);
00706 if (data1)
00707 do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits);
00708 }
00709
00710 static void ape_apply_filters(APEContext * ctx, int32_t * decoded0,
00711 int32_t * decoded1, int count)
00712 {
00713 int i;
00714
00715 for (i = 0; i < APE_FILTER_LEVELS; i++) {
00716 if (!ape_filter_orders[ctx->fset][i])
00717 break;
00718 apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count, ape_filter_orders[ctx->fset][i], ape_filter_fracbits[ctx->fset][i]);
00719 }
00720 }
00721
00722 static void init_frame_decoder(APEContext * ctx)
00723 {
00724 int i;
00725 init_entropy_decoder(ctx);
00726 init_predictor_decoder(ctx);
00727
00728 for (i = 0; i < APE_FILTER_LEVELS; i++) {
00729 if (!ape_filter_orders[ctx->fset][i])
00730 break;
00731 init_filter(ctx, ctx->filters[i], ctx->filterbuf[i], ape_filter_orders[ctx->fset][i]);
00732 }
00733 }
00734
00735 static void ape_unpack_mono(APEContext * ctx, int count)
00736 {
00737 int32_t left;
00738 int32_t *decoded0 = ctx->decoded0;
00739 int32_t *decoded1 = ctx->decoded1;
00740
00741 if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
00742 entropy_decode(ctx, count, 0);
00743
00744 av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
00745 return;
00746 }
00747
00748 entropy_decode(ctx, count, 0);
00749 ape_apply_filters(ctx, decoded0, NULL, count);
00750
00751
00752 predictor_decode_mono(ctx, count);
00753
00754
00755 if (ctx->channels == 2) {
00756 while (count--) {
00757 left = *decoded0;
00758 *(decoded1++) = *(decoded0++) = left;
00759 }
00760 }
00761 }
00762
00763 static void ape_unpack_stereo(APEContext * ctx, int count)
00764 {
00765 int32_t left, right;
00766 int32_t *decoded0 = ctx->decoded0;
00767 int32_t *decoded1 = ctx->decoded1;
00768
00769 if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
00770
00771 av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
00772 return;
00773 }
00774
00775 entropy_decode(ctx, count, 1);
00776 ape_apply_filters(ctx, decoded0, decoded1, count);
00777
00778
00779 predictor_decode_stereo(ctx, count);
00780
00781
00782 while (count--) {
00783 left = *decoded1 - (*decoded0 / 2);
00784 right = left + *decoded0;
00785
00786 *(decoded0++) = left;
00787 *(decoded1++) = right;
00788 }
00789 }
00790
00791 static int ape_decode_frame(AVCodecContext * avctx,
00792 void *data, int *data_size,
00793 AVPacket *avpkt)
00794 {
00795 const uint8_t *buf = avpkt->data;
00796 int buf_size = avpkt->size;
00797 APEContext *s = avctx->priv_data;
00798 int16_t *samples = data;
00799 int nblocks;
00800 int i, n;
00801 int blockstodecode;
00802 int bytes_used;
00803
00804 if (buf_size == 0 && !s->samples) {
00805 *data_size = 0;
00806 return 0;
00807 }
00808
00809
00810 if (BLOCKS_PER_LOOP * 2 * avctx->channels > *data_size) {
00811 av_log (avctx, AV_LOG_ERROR, "Packet size is too big to be handled in lavc! (max is %d where you have %d)\n", *data_size, s->samples * 2 * avctx->channels);
00812 return -1;
00813 }
00814
00815 if(!s->samples){
00816 s->data = av_realloc(s->data, (buf_size + 3) & ~3);
00817 s->dsp.bswap_buf((uint32_t*)s->data, (const uint32_t*)buf, buf_size >> 2);
00818 s->ptr = s->last_ptr = s->data;
00819 s->data_end = s->data + buf_size;
00820
00821 nblocks = s->samples = bytestream_get_be32(&s->ptr);
00822 n = bytestream_get_be32(&s->ptr);
00823 if(n < 0 || n > 3){
00824 av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
00825 s->data = NULL;
00826 return -1;
00827 }
00828 s->ptr += n;
00829
00830 s->currentframeblocks = nblocks;
00831 buf += 4;
00832 if (s->samples <= 0) {
00833 *data_size = 0;
00834 return buf_size;
00835 }
00836
00837 memset(s->decoded0, 0, sizeof(s->decoded0));
00838 memset(s->decoded1, 0, sizeof(s->decoded1));
00839
00840
00841 init_frame_decoder(s);
00842 }
00843
00844 if (!s->data) {
00845 *data_size = 0;
00846 return buf_size;
00847 }
00848
00849 nblocks = s->samples;
00850 blockstodecode = FFMIN(BLOCKS_PER_LOOP, nblocks);
00851
00852 s->error=0;
00853
00854 if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
00855 ape_unpack_mono(s, blockstodecode);
00856 else
00857 ape_unpack_stereo(s, blockstodecode);
00858 emms_c();
00859
00860 if(s->error || s->ptr > s->data_end){
00861 s->samples=0;
00862 av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
00863 return -1;
00864 }
00865
00866 for (i = 0; i < blockstodecode; i++) {
00867 *samples++ = s->decoded0[i];
00868 if(s->channels == 2)
00869 *samples++ = s->decoded1[i];
00870 }
00871
00872 s->samples -= blockstodecode;
00873
00874 *data_size = blockstodecode * 2 * s->channels;
00875 bytes_used = s->samples ? s->ptr - s->last_ptr : buf_size;
00876 s->last_ptr = s->ptr;
00877 return bytes_used;
00878 }
00879
00880 AVCodec ape_decoder = {
00881 "ape",
00882 AVMEDIA_TYPE_AUDIO,
00883 CODEC_ID_APE,
00884 sizeof(APEContext),
00885 ape_decode_init,
00886 NULL,
00887 ape_decode_close,
00888 ape_decode_frame,
00889 .capabilities = CODEC_CAP_SUBFRAMES,
00890 .long_name = NULL_IF_CONFIG_SMALL("Monkey's Audio"),
00891 };