00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024 #include <math.h>
00025 #include <stdint.h>
00026 #include <string.h>
00027
00028 #include "libavutil/mathematics.h"
00029 #include "avcodec.h"
00030 #define BITSTREAM_READER_LE
00031 #include "get_bits.h"
00032 #include "dsputil.h"
00033
00034 #include "lsp.h"
00035 #include "acelp_vectors.h"
00036 #include "acelp_pitch_delay.h"
00037 #include "acelp_filters.h"
00038 #include "celp_filters.h"
00039
00040 #define MAX_SUBFRAME_COUNT 5
00041
00042 #include "sipr.h"
00043 #include "siprdata.h"
00044
00045 typedef struct {
00046 const char *mode_name;
00047 uint16_t bits_per_frame;
00048 uint8_t subframe_count;
00049 uint8_t frames_per_packet;
00050 float pitch_sharp_factor;
00051
00052
00053 uint8_t number_of_fc_indexes;
00054 uint8_t ma_predictor_bits;
00055
00057 uint8_t vq_indexes_bits[5];
00058
00060 uint8_t pitch_delay_bits[5];
00061
00062 uint8_t gp_index_bits;
00063 uint8_t fc_index_bits[10];
00064 uint8_t gc_index_bits;
00065 } SiprModeParam;
00066
00067 static const SiprModeParam modes[MODE_COUNT] = {
00068 [MODE_16k] = {
00069 .mode_name = "16k",
00070 .bits_per_frame = 160,
00071 .subframe_count = SUBFRAME_COUNT_16k,
00072 .frames_per_packet = 1,
00073 .pitch_sharp_factor = 0.00,
00074
00075 .number_of_fc_indexes = 10,
00076 .ma_predictor_bits = 1,
00077 .vq_indexes_bits = {7, 8, 7, 7, 7},
00078 .pitch_delay_bits = {9, 6},
00079 .gp_index_bits = 4,
00080 .fc_index_bits = {4, 5, 4, 5, 4, 5, 4, 5, 4, 5},
00081 .gc_index_bits = 5
00082 },
00083
00084 [MODE_8k5] = {
00085 .mode_name = "8k5",
00086 .bits_per_frame = 152,
00087 .subframe_count = 3,
00088 .frames_per_packet = 1,
00089 .pitch_sharp_factor = 0.8,
00090
00091 .number_of_fc_indexes = 3,
00092 .ma_predictor_bits = 0,
00093 .vq_indexes_bits = {6, 7, 7, 7, 5},
00094 .pitch_delay_bits = {8, 5, 5},
00095 .gp_index_bits = 0,
00096 .fc_index_bits = {9, 9, 9},
00097 .gc_index_bits = 7
00098 },
00099
00100 [MODE_6k5] = {
00101 .mode_name = "6k5",
00102 .bits_per_frame = 232,
00103 .subframe_count = 3,
00104 .frames_per_packet = 2,
00105 .pitch_sharp_factor = 0.8,
00106
00107 .number_of_fc_indexes = 3,
00108 .ma_predictor_bits = 0,
00109 .vq_indexes_bits = {6, 7, 7, 7, 5},
00110 .pitch_delay_bits = {8, 5, 5},
00111 .gp_index_bits = 0,
00112 .fc_index_bits = {5, 5, 5},
00113 .gc_index_bits = 7
00114 },
00115
00116 [MODE_5k0] = {
00117 .mode_name = "5k0",
00118 .bits_per_frame = 296,
00119 .subframe_count = 5,
00120 .frames_per_packet = 2,
00121 .pitch_sharp_factor = 0.85,
00122
00123 .number_of_fc_indexes = 1,
00124 .ma_predictor_bits = 0,
00125 .vq_indexes_bits = {6, 7, 7, 7, 5},
00126 .pitch_delay_bits = {8, 5, 8, 5, 5},
00127 .gp_index_bits = 0,
00128 .fc_index_bits = {10},
00129 .gc_index_bits = 7
00130 }
00131 };
00132
00133 const float ff_pow_0_5[] = {
00134 1.0/(1 << 1), 1.0/(1 << 2), 1.0/(1 << 3), 1.0/(1 << 4),
00135 1.0/(1 << 5), 1.0/(1 << 6), 1.0/(1 << 7), 1.0/(1 << 8),
00136 1.0/(1 << 9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12),
00137 1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16)
00138 };
00139
00140 static void dequant(float *out, const int *idx, const float *cbs[])
00141 {
00142 int i;
00143 int stride = 2;
00144 int num_vec = 5;
00145
00146 for (i = 0; i < num_vec; i++)
00147 memcpy(out + stride*i, cbs[i] + stride*idx[i], stride*sizeof(float));
00148
00149 }
00150
00151 static void lsf_decode_fp(float *lsfnew, float *lsf_history,
00152 const SiprParameters *parm)
00153 {
00154 int i;
00155 float lsf_tmp[LP_FILTER_ORDER];
00156
00157 dequant(lsf_tmp, parm->vq_indexes, lsf_codebooks);
00158
00159 for (i = 0; i < LP_FILTER_ORDER; i++)
00160 lsfnew[i] = lsf_history[i] * 0.33 + lsf_tmp[i] + mean_lsf[i];
00161
00162 ff_sort_nearly_sorted_floats(lsfnew, LP_FILTER_ORDER - 1);
00163
00164
00165
00166 ff_set_min_dist_lsf(lsfnew, LSFQ_DIFF_MIN, LP_FILTER_ORDER - 1);
00167 lsfnew[9] = FFMIN(lsfnew[LP_FILTER_ORDER - 1], 1.3 * M_PI);
00168
00169 memcpy(lsf_history, lsf_tmp, LP_FILTER_ORDER * sizeof(*lsf_history));
00170
00171 for (i = 0; i < LP_FILTER_ORDER - 1; i++)
00172 lsfnew[i] = cos(lsfnew[i]);
00173 lsfnew[LP_FILTER_ORDER - 1] *= 6.153848 / M_PI;
00174 }
00175
00177 static void pitch_sharpening(int pitch_lag_int, float beta,
00178 float *fixed_vector)
00179 {
00180 int i;
00181
00182 for (i = pitch_lag_int; i < SUBFR_SIZE; i++)
00183 fixed_vector[i] += beta * fixed_vector[i - pitch_lag_int];
00184 }
00185
00191 static void decode_parameters(SiprParameters* parms, GetBitContext *pgb,
00192 const SiprModeParam *p)
00193 {
00194 int i, j;
00195
00196 if (p->ma_predictor_bits)
00197 parms->ma_pred_switch = get_bits(pgb, p->ma_predictor_bits);
00198
00199 for (i = 0; i < 5; i++)
00200 parms->vq_indexes[i] = get_bits(pgb, p->vq_indexes_bits[i]);
00201
00202 for (i = 0; i < p->subframe_count; i++) {
00203 parms->pitch_delay[i] = get_bits(pgb, p->pitch_delay_bits[i]);
00204 if (p->gp_index_bits)
00205 parms->gp_index[i] = get_bits(pgb, p->gp_index_bits);
00206
00207 for (j = 0; j < p->number_of_fc_indexes; j++)
00208 parms->fc_indexes[i][j] = get_bits(pgb, p->fc_index_bits[j]);
00209
00210 parms->gc_index[i] = get_bits(pgb, p->gc_index_bits);
00211 }
00212 }
00213
00214 static void sipr_decode_lp(float *lsfnew, const float *lsfold, float *Az,
00215 int num_subfr)
00216 {
00217 double lsfint[LP_FILTER_ORDER];
00218 int i,j;
00219 float t, t0 = 1.0 / num_subfr;
00220
00221 t = t0 * 0.5;
00222 for (i = 0; i < num_subfr; i++) {
00223 for (j = 0; j < LP_FILTER_ORDER; j++)
00224 lsfint[j] = lsfold[j] * (1 - t) + t * lsfnew[j];
00225
00226 ff_amrwb_lsp2lpc(lsfint, Az, LP_FILTER_ORDER);
00227 Az += LP_FILTER_ORDER;
00228 t += t0;
00229 }
00230 }
00231
00235 static void eval_ir(const float *Az, int pitch_lag, float *freq,
00236 float pitch_sharp_factor)
00237 {
00238 float tmp1[SUBFR_SIZE+1], tmp2[LP_FILTER_ORDER+1];
00239 int i;
00240
00241 tmp1[0] = 1.;
00242 for (i = 0; i < LP_FILTER_ORDER; i++) {
00243 tmp1[i+1] = Az[i] * ff_pow_0_55[i];
00244 tmp2[i ] = Az[i] * ff_pow_0_7 [i];
00245 }
00246 memset(tmp1 + 11, 0, 37 * sizeof(float));
00247
00248 ff_celp_lp_synthesis_filterf(freq, tmp2, tmp1, SUBFR_SIZE,
00249 LP_FILTER_ORDER);
00250
00251 pitch_sharpening(pitch_lag, pitch_sharp_factor, freq);
00252 }
00253
00257 static void convolute_with_sparse(float *out, const AMRFixed *pulses,
00258 const float *shape, int length)
00259 {
00260 int i, j;
00261
00262 memset(out, 0, length*sizeof(float));
00263 for (i = 0; i < pulses->n; i++)
00264 for (j = pulses->x[i]; j < length; j++)
00265 out[j] += pulses->y[i] * shape[j - pulses->x[i]];
00266 }
00267
00271 static void postfilter_5k0(SiprContext *ctx, const float *lpc, float *samples)
00272 {
00273 float buf[SUBFR_SIZE + LP_FILTER_ORDER];
00274 float *pole_out = buf + LP_FILTER_ORDER;
00275 float lpc_n[LP_FILTER_ORDER];
00276 float lpc_d[LP_FILTER_ORDER];
00277 int i;
00278
00279 for (i = 0; i < LP_FILTER_ORDER; i++) {
00280 lpc_d[i] = lpc[i] * ff_pow_0_75[i];
00281 lpc_n[i] = lpc[i] * ff_pow_0_5 [i];
00282 };
00283
00284 memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem,
00285 LP_FILTER_ORDER*sizeof(float));
00286
00287 ff_celp_lp_synthesis_filterf(pole_out, lpc_d, samples, SUBFR_SIZE,
00288 LP_FILTER_ORDER);
00289
00290 memcpy(ctx->postfilter_mem, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
00291 LP_FILTER_ORDER*sizeof(float));
00292
00293 ff_tilt_compensation(&ctx->tilt_mem, 0.4, pole_out, SUBFR_SIZE);
00294
00295 memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem5k0,
00296 LP_FILTER_ORDER*sizeof(*pole_out));
00297
00298 memcpy(ctx->postfilter_mem5k0, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
00299 LP_FILTER_ORDER*sizeof(*pole_out));
00300
00301 ff_celp_lp_zero_synthesis_filterf(samples, lpc_n, pole_out, SUBFR_SIZE,
00302 LP_FILTER_ORDER);
00303
00304 }
00305
00306 static void decode_fixed_sparse(AMRFixed *fixed_sparse, const int16_t *pulses,
00307 SiprMode mode, int low_gain)
00308 {
00309 int i;
00310
00311 switch (mode) {
00312 case MODE_6k5:
00313 for (i = 0; i < 3; i++) {
00314 fixed_sparse->x[i] = 3 * (pulses[i] & 0xf) + i;
00315 fixed_sparse->y[i] = pulses[i] & 0x10 ? -1 : 1;
00316 }
00317 fixed_sparse->n = 3;
00318 break;
00319 case MODE_8k5:
00320 for (i = 0; i < 3; i++) {
00321 fixed_sparse->x[2*i ] = 3 * ((pulses[i] >> 4) & 0xf) + i;
00322 fixed_sparse->x[2*i + 1] = 3 * ( pulses[i] & 0xf) + i;
00323
00324 fixed_sparse->y[2*i ] = (pulses[i] & 0x100) ? -1.0: 1.0;
00325
00326 fixed_sparse->y[2*i + 1] =
00327 (fixed_sparse->x[2*i + 1] < fixed_sparse->x[2*i]) ?
00328 -fixed_sparse->y[2*i ] : fixed_sparse->y[2*i];
00329 }
00330
00331 fixed_sparse->n = 6;
00332 break;
00333 case MODE_5k0:
00334 default:
00335 if (low_gain) {
00336 int offset = (pulses[0] & 0x200) ? 2 : 0;
00337 int val = pulses[0];
00338
00339 for (i = 0; i < 3; i++) {
00340 int index = (val & 0x7) * 6 + 4 - i*2;
00341
00342 fixed_sparse->y[i] = (offset + index) & 0x3 ? -1 : 1;
00343 fixed_sparse->x[i] = index;
00344
00345 val >>= 3;
00346 }
00347 fixed_sparse->n = 3;
00348 } else {
00349 int pulse_subset = (pulses[0] >> 8) & 1;
00350
00351 fixed_sparse->x[0] = ((pulses[0] >> 4) & 15) * 3 + pulse_subset;
00352 fixed_sparse->x[1] = ( pulses[0] & 15) * 3 + pulse_subset + 1;
00353
00354 fixed_sparse->y[0] = pulses[0] & 0x200 ? -1 : 1;
00355 fixed_sparse->y[1] = -fixed_sparse->y[0];
00356 fixed_sparse->n = 2;
00357 }
00358 break;
00359 }
00360 }
00361
00362 static void decode_frame(SiprContext *ctx, SiprParameters *params,
00363 float *out_data)
00364 {
00365 int i, j;
00366 int subframe_count = modes[ctx->mode].subframe_count;
00367 int frame_size = subframe_count * SUBFR_SIZE;
00368 float Az[LP_FILTER_ORDER * MAX_SUBFRAME_COUNT];
00369 float *excitation;
00370 float ir_buf[SUBFR_SIZE + LP_FILTER_ORDER];
00371 float lsf_new[LP_FILTER_ORDER];
00372 float *impulse_response = ir_buf + LP_FILTER_ORDER;
00373 float *synth = ctx->synth_buf + 16;
00374
00375 int t0_first = 0;
00376 AMRFixed fixed_cb;
00377
00378 memset(ir_buf, 0, LP_FILTER_ORDER * sizeof(float));
00379 lsf_decode_fp(lsf_new, ctx->lsf_history, params);
00380
00381 sipr_decode_lp(lsf_new, ctx->lsp_history, Az, subframe_count);
00382
00383 memcpy(ctx->lsp_history, lsf_new, LP_FILTER_ORDER * sizeof(float));
00384
00385 excitation = ctx->excitation + PITCH_DELAY_MAX + L_INTERPOL;
00386
00387 for (i = 0; i < subframe_count; i++) {
00388 float *pAz = Az + i*LP_FILTER_ORDER;
00389 float fixed_vector[SUBFR_SIZE];
00390 int T0,T0_frac;
00391 float pitch_gain, gain_code, avg_energy;
00392
00393 ff_decode_pitch_lag(&T0, &T0_frac, params->pitch_delay[i], t0_first, i,
00394 ctx->mode == MODE_5k0, 6);
00395
00396 if (i == 0 || (i == 2 && ctx->mode == MODE_5k0))
00397 t0_first = T0;
00398
00399 ff_acelp_interpolatef(excitation, excitation - T0 + (T0_frac <= 0),
00400 ff_b60_sinc, 6,
00401 2 * ((2 + T0_frac)%3 + 1), LP_FILTER_ORDER,
00402 SUBFR_SIZE);
00403
00404 decode_fixed_sparse(&fixed_cb, params->fc_indexes[i], ctx->mode,
00405 ctx->past_pitch_gain < 0.8);
00406
00407 eval_ir(pAz, T0, impulse_response, modes[ctx->mode].pitch_sharp_factor);
00408
00409 convolute_with_sparse(fixed_vector, &fixed_cb, impulse_response,
00410 SUBFR_SIZE);
00411
00412 avg_energy =
00413 (0.01 + ff_scalarproduct_float_c(fixed_vector, fixed_vector, SUBFR_SIZE)) /
00414 SUBFR_SIZE;
00415
00416 ctx->past_pitch_gain = pitch_gain = gain_cb[params->gc_index[i]][0];
00417
00418 gain_code = ff_amr_set_fixed_gain(gain_cb[params->gc_index[i]][1],
00419 avg_energy, ctx->energy_history,
00420 34 - 15.0/(0.05*M_LN10/M_LN2),
00421 pred);
00422
00423 ff_weighted_vector_sumf(excitation, excitation, fixed_vector,
00424 pitch_gain, gain_code, SUBFR_SIZE);
00425
00426 pitch_gain *= 0.5 * pitch_gain;
00427 pitch_gain = FFMIN(pitch_gain, 0.4);
00428
00429 ctx->gain_mem = 0.7 * ctx->gain_mem + 0.3 * pitch_gain;
00430 ctx->gain_mem = FFMIN(ctx->gain_mem, pitch_gain);
00431 gain_code *= ctx->gain_mem;
00432
00433 for (j = 0; j < SUBFR_SIZE; j++)
00434 fixed_vector[j] = excitation[j] - gain_code * fixed_vector[j];
00435
00436 if (ctx->mode == MODE_5k0) {
00437 postfilter_5k0(ctx, pAz, fixed_vector);
00438
00439 ff_celp_lp_synthesis_filterf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
00440 pAz, excitation, SUBFR_SIZE,
00441 LP_FILTER_ORDER);
00442 }
00443
00444 ff_celp_lp_synthesis_filterf(synth + i*SUBFR_SIZE, pAz, fixed_vector,
00445 SUBFR_SIZE, LP_FILTER_ORDER);
00446
00447 excitation += SUBFR_SIZE;
00448 }
00449
00450 memcpy(synth - LP_FILTER_ORDER, synth + frame_size - LP_FILTER_ORDER,
00451 LP_FILTER_ORDER * sizeof(float));
00452
00453 if (ctx->mode == MODE_5k0) {
00454 for (i = 0; i < subframe_count; i++) {
00455 float energy = ff_scalarproduct_float_c(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
00456 ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
00457 SUBFR_SIZE);
00458 ff_adaptive_gain_control(&synth[i * SUBFR_SIZE],
00459 &synth[i * SUBFR_SIZE], energy,
00460 SUBFR_SIZE, 0.9, &ctx->postfilter_agc);
00461 }
00462
00463 memcpy(ctx->postfilter_syn5k0, ctx->postfilter_syn5k0 + frame_size,
00464 LP_FILTER_ORDER*sizeof(float));
00465 }
00466 memmove(ctx->excitation, excitation - PITCH_DELAY_MAX - L_INTERPOL,
00467 (PITCH_DELAY_MAX + L_INTERPOL) * sizeof(float));
00468
00469 ff_acelp_apply_order_2_transfer_function(out_data, synth,
00470 (const float[2]) {-1.99997 , 1.000000000},
00471 (const float[2]) {-1.93307352, 0.935891986},
00472 0.939805806,
00473 ctx->highpass_filt_mem,
00474 frame_size);
00475 }
00476
00477 static av_cold int sipr_decoder_init(AVCodecContext * avctx)
00478 {
00479 SiprContext *ctx = avctx->priv_data;
00480 int i;
00481
00482 switch (avctx->block_align) {
00483 case 20: ctx->mode = MODE_16k; break;
00484 case 19: ctx->mode = MODE_8k5; break;
00485 case 29: ctx->mode = MODE_6k5; break;
00486 case 37: ctx->mode = MODE_5k0; break;
00487 default:
00488 if (avctx->bit_rate > 12200) ctx->mode = MODE_16k;
00489 else if (avctx->bit_rate > 7500 ) ctx->mode = MODE_8k5;
00490 else if (avctx->bit_rate > 5750 ) ctx->mode = MODE_6k5;
00491 else ctx->mode = MODE_5k0;
00492 av_log(avctx, AV_LOG_WARNING,
00493 "Invalid block_align: %d. Mode %s guessed based on bitrate: %d\n",
00494 avctx->block_align, modes[ctx->mode].mode_name, avctx->bit_rate);
00495 }
00496
00497 av_log(avctx, AV_LOG_DEBUG, "Mode: %s\n", modes[ctx->mode].mode_name);
00498
00499 if (ctx->mode == MODE_16k) {
00500 ff_sipr_init_16k(ctx);
00501 ctx->decode_frame = ff_sipr_decode_frame_16k;
00502 } else {
00503 ctx->decode_frame = decode_frame;
00504 }
00505
00506 for (i = 0; i < LP_FILTER_ORDER; i++)
00507 ctx->lsp_history[i] = cos((i+1) * M_PI / (LP_FILTER_ORDER + 1));
00508
00509 for (i = 0; i < 4; i++)
00510 ctx->energy_history[i] = -14;
00511
00512 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
00513
00514 avcodec_get_frame_defaults(&ctx->frame);
00515 avctx->coded_frame = &ctx->frame;
00516
00517 return 0;
00518 }
00519
00520 static int sipr_decode_frame(AVCodecContext *avctx, void *data,
00521 int *got_frame_ptr, AVPacket *avpkt)
00522 {
00523 SiprContext *ctx = avctx->priv_data;
00524 const uint8_t *buf=avpkt->data;
00525 SiprParameters parm;
00526 const SiprModeParam *mode_par = &modes[ctx->mode];
00527 GetBitContext gb;
00528 float *samples;
00529 int subframe_size = ctx->mode == MODE_16k ? L_SUBFR_16k : SUBFR_SIZE;
00530 int i, ret;
00531
00532 ctx->avctx = avctx;
00533 if (avpkt->size < (mode_par->bits_per_frame >> 3)) {
00534 av_log(avctx, AV_LOG_ERROR,
00535 "Error processing packet: packet size (%d) too small\n",
00536 avpkt->size);
00537 return -1;
00538 }
00539
00540
00541 ctx->frame.nb_samples = mode_par->frames_per_packet * subframe_size *
00542 mode_par->subframe_count;
00543 if ((ret = avctx->get_buffer(avctx, &ctx->frame)) < 0) {
00544 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
00545 return ret;
00546 }
00547 samples = (float *)ctx->frame.data[0];
00548
00549 init_get_bits(&gb, buf, mode_par->bits_per_frame);
00550
00551 for (i = 0; i < mode_par->frames_per_packet; i++) {
00552 decode_parameters(&parm, &gb, mode_par);
00553
00554 ctx->decode_frame(ctx, &parm, samples);
00555
00556 samples += subframe_size * mode_par->subframe_count;
00557 }
00558
00559 *got_frame_ptr = 1;
00560 *(AVFrame *)data = ctx->frame;
00561
00562 return mode_par->bits_per_frame >> 3;
00563 }
00564
00565 AVCodec ff_sipr_decoder = {
00566 .name = "sipr",
00567 .type = AVMEDIA_TYPE_AUDIO,
00568 .id = AV_CODEC_ID_SIPR,
00569 .priv_data_size = sizeof(SiprContext),
00570 .init = sipr_decoder_init,
00571 .decode = sipr_decode_frame,
00572 .capabilities = CODEC_CAP_DR1,
00573 .long_name = NULL_IF_CONFIG_SMALL("RealAudio SIPR / ACELP.NET"),
00574 };