46 #define MUL16(a,b) ((a) * (b)) 
   48 #define CMAC(pre, pim, are, aim, bre, bim) \ 
   50    pre += (MUL16(are, bre) - MUL16(aim, bim));\ 
   51    pim += (MUL16(are, bim) + MUL16(bre, aim));\ 
   56 #   define REF_SCALE(x, bits)  (x) 
   58 #elif CONFIG_FFT_FIXED_32 
   59 #   define RANGE 8388608 
   60 #   define REF_SCALE(x, bits) (x) 
   64 #   define REF_SCALE(x, bits) ((x) / (1<<(bits))) 
   80     for (i = 0; i < (n/2); i++) {
 
   81         alpha = 2 * 
M_PI * (float)i / (
float)
n;
 
   94     double tmp_re, tmp_im, 
s, 
c;
 
   99     for (i = 0; i < 
n; i++) {
 
  103         for (j = 0; j < 
n; j++) {
 
  104             k = (i * j) & (n - 1);
 
  112             CMAC(tmp_re, tmp_im, c, s, q->
re, q->
im);
 
  126     for (i = 0; i < 
n; i++) {
 
  128         for (k = 0; k < n/2; k++) {
 
  129             a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
 
  130             f = cos(
M_PI * a / (
double)(2 * n));
 
  145     for (k = 0; k < n/2; k++) {
 
  147         for (i = 0; i < 
n; i++) {
 
  148             a = (2*
M_PI*(2*i+1+n/2)*(2*k+1) / (4 * 
n));
 
  149             s += input[i] * cos(a);
 
  163     for (i = 0; i < 
n; i++) {
 
  165         for (k = 1; k < 
n; k++) {
 
  166             a = 
M_PI*k*(i+0.5) / 
n;
 
  167             s += input[k] * cos(a);
 
  169         output[i] = 2 * s / 
n;
 
  179     for (k = 0; k < 
n; k++) {
 
  181         for (i = 0; i < 
n; i++) {
 
  182             a = 
M_PI*k*(i+0.5) / 
n;
 
  183             s += input[i] * cos(a);
 
  203     for (i = 0; i < 
n; i++) {
 
  204         double e = fabsf(tab1[i] - (tab2[i] / scale)) / 
RANGE;
 
  207                    i, tab1[i], tab2[i]);
 
  221            "-h     print this help\n" 
  226            "-i     inverse transform test\n" 
  227            "-n b   set the transform size to 2^b\n" 
  228            "-f x   set scale factor for output data of (I)MDCT to x\n" 
  243 int main(
int argc, 
char **argv)
 
  260     int fft_nbits, fft_size;
 
  267         c = 
getopt(argc, argv, 
"hsimrdn:f:c:");
 
  306     fft_size = 1 << fft_nbits;
 
  356     for (i = 0; i < fft_size; i++) {
 
  379         memcpy(tab, tab1, fft_size * 
sizeof(
FFTComplex));
 
  383         fft_ref(tab_ref, tab1, fft_nbits);
 
  388         fft_size_2 = fft_size >> 1;
 
  391             tab1[fft_size_2].
im = 0;
 
  392             for (i = 1; i < fft_size_2; i++) {
 
  393                 tab1[fft_size_2+i].
re =  tab1[fft_size_2-i].
re;
 
  394                 tab1[fft_size_2+i].
im = -tab1[fft_size_2-i].
im;
 
  397             memcpy(tab2, tab1, fft_size * 
sizeof(
FFTSample));
 
  398             tab2[1] = tab1[fft_size_2].
re;
 
  401             fft_ref(tab_ref, tab1, fft_nbits);
 
  402             for (i = 0; i < fft_size; i++) {
 
  406             err = 
check_diff((
float *)tab_ref, (
float *)tab, fft_size * 2, 0.5);
 
  408             for (i = 0; i < fft_size; i++) {
 
  409                 tab2[i]    = tab1[i].
re;
 
  413             fft_ref(tab_ref, tab1, fft_nbits);
 
  414             tab_ref[0].
im = tab_ref[fft_size_2].
re;
 
  415             err = 
check_diff((
float *)tab_ref, (
float *)tab2, fft_size, 1.0);
 
  419         memcpy(tab, tab1, fft_size * 
sizeof(
FFTComplex));
 
  426         err = 
check_diff((
float *)tab_ref, (
float *)tab, fft_size, 1.0);
 
  442             for (it = 0; it < nb_its; it++) {
 
  452                     memcpy(tab, tab1, fft_size * 
sizeof(
FFTComplex));
 
  457                     memcpy(tab2, tab1, fft_size * 
sizeof(
FFTSample));
 
  461                     memcpy(tab2, tab1, fft_size * 
sizeof(
FFTSample));
 
  468             if (duration >= 1000000)
 
  472         av_log(NULL, 
AV_LOG_INFO,
"time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
 
  473                (
double)duration / nb_its,
 
  474                (
double)duration / 1000000.0,
 
  504         printf(
"Error: %d.\n", err);