61 uint8_t *dest_cr,
int mb_x,
int mb_y)
64 int dc, dcu, dcv,
y, i;
65 for (i = 0; i < 4; i++) {
66 dc = s->
dc_val[0][mb_x * 2 + (i & 1) + (mb_y * 2 + (i >> 1)) * s->
b8_stride];
71 for (y = 0; y < 8; y++) {
73 for (x = 0; x < 8; x++)
74 dest_y[x + (i & 1) * 8 + (y + (i >> 1) * 8) * linesize[0]] = dc / 8;
89 for (y = 0; y < 8; y++) {
91 for (x = 0; x < 8; x++) {
92 dest_cb[x + y * linesize[1]] = dcu / 8;
93 dest_cr[x + y * linesize[2]] = dcv / 8;
103 for (y = 1; y < height - 1; y++) {
104 int prev_dc = data[0 + y *
stride];
106 for (x = 1; x < width - 1; x++) {
109 data[x + y *
stride] * 8 -
111 dc = (dc * 10923 + 32768) >> 16;
112 prev_dc = data[x + y *
stride];
118 for (x = 1; x < width - 1; x++) {
119 int prev_dc = data[x];
121 for (y = 1; y < height - 1; y++) {
125 data[x + y *
stride] * 8 -
126 data[x + (y + 1) * stride];
127 dc = (dc * 10923 + 32768) >> 16;
128 prev_dc = data[x + y *
stride];
140 int h,
int stride,
int is_luma)
151 for(b_y=0; b_y<
h; b_y++){
154 for(b_x=0; b_x<w; b_x++){
155 int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->
mb_stride;
159 color= dc[b_x + b_y*
stride];
163 dist[b_x + b_y*
stride][1]= distance >= 0 ? b_x-distance : 9999;
167 for(b_x=w-1; b_x>=0; b_x--){
168 int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->
mb_stride;
172 color= dc[b_x + b_y*
stride];
176 dist[b_x + b_y*
stride][0]= distance >= 0 ? distance-b_x : 9999;
179 for(b_x=0; b_x<w; b_x++){
182 for(b_y=0; b_y<
h; b_y++){
183 int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->
mb_stride;
187 color= dc[b_x + b_y*
stride];
191 dist[b_x + b_y*
stride][3]= distance >= 0 ? b_y-distance : 9999;
195 for(b_y=h-1; b_y>=0; b_y--){
196 int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->
mb_stride;
200 color= dc[b_x + b_y*
stride];
204 dist[b_x + b_y*
stride][2]= distance >= 0 ? distance-b_y : 9999;
208 for (b_y = 0; b_y <
h; b_y++) {
209 for (b_x = 0; b_x < w; b_x++) {
210 int mb_index, error, j;
211 int64_t guess, weight_sum;
212 mb_index = (b_x >> is_luma) + (b_y >> is_luma) * s->
mb_stride;
222 for (j = 0; j < 4; j++) {
223 int64_t
weight = 256 * 256 * 256 * 16 /
FFMAX(dist[b_x + b_y*stride][j], 1);
224 guess += weight*(int64_t)col[b_x + b_y*stride][j];
227 guess = (guess + weight_sum / 2) / weight_sum;
228 dc[b_x + b_y *
stride] = guess;
243 int h,
int stride,
int is_luma)
245 int b_x, b_y, mvx_stride, mvy_stride;
248 mvx_stride >>= is_luma;
249 mvy_stride *= mvx_stride;
251 for (b_y = 0; b_y <
h; b_y++) {
252 for (b_x = 0; b_x < w - 1; b_x++) {
260 int offset = b_x * 8 + b_y * stride * 8;
261 int16_t *left_mv = s->
cur_pic.
motion_val[0][mvy_stride * b_y + mvx_stride * b_x];
262 int16_t *right_mv = s->
cur_pic.
motion_val[0][mvy_stride * b_y + mvx_stride * (b_x + 1)];
263 if (!(left_damage || right_damage))
265 if ((!left_intra) && (!right_intra) &&
266 FFABS(left_mv[0] - right_mv[0]) +
267 FFABS(left_mv[1] + right_mv[1]) < 2)
270 for (y = 0; y < 8; y++) {
273 a = dst[offset + 7 + y *
stride] - dst[offset + 6 + y *
stride];
274 b = dst[offset + 8 + y *
stride] - dst[offset + 7 + y *
stride];
275 c = dst[offset + 9 + y *
stride] - dst[offset + 8 + y *
stride];
285 if (!(left_damage && right_damage))
289 dst[offset + 7 + y *
stride] = cm[dst[offset + 7 + y *
stride] + ((d * 7) >> 4)];
290 dst[offset + 6 + y *
stride] = cm[dst[offset + 6 + y *
stride] + ((d * 5) >> 4)];
291 dst[offset + 5 + y *
stride] = cm[dst[offset + 5 + y *
stride] + ((d * 3) >> 4)];
292 dst[offset + 4 + y *
stride] = cm[dst[offset + 4 + y *
stride] + ((d * 1) >> 4)];
295 dst[offset + 8 + y *
stride] = cm[dst[offset + 8 + y *
stride] - ((d * 7) >> 4)];
296 dst[offset + 9 + y *
stride] = cm[dst[offset + 9 + y *
stride] - ((d * 5) >> 4)];
297 dst[offset + 10+ y *
stride] = cm[dst[offset + 10 + y *
stride] - ((d * 3) >> 4)];
298 dst[offset + 11+ y *
stride] = cm[dst[offset + 11 + y *
stride] - ((d * 1) >> 4)];
313 int b_x, b_y, mvx_stride, mvy_stride;
316 mvx_stride >>= is_luma;
317 mvy_stride *= mvx_stride;
319 for (b_y = 0; b_y < h - 1; b_y++) {
320 for (b_x = 0; b_x < w; b_x++) {
328 int offset = b_x * 8 + b_y * stride * 8;
331 int16_t *bottom_mv = s->
cur_pic.
motion_val[0][mvy_stride * (b_y + 1) + mvx_stride * b_x];
333 if (!(top_damage || bottom_damage))
336 if ((!top_intra) && (!bottom_intra) &&
337 FFABS(top_mv[0] - bottom_mv[0]) +
338 FFABS(top_mv[1] + bottom_mv[1]) < 2)
341 for (x = 0; x < 8; x++) {
344 a = dst[offset + x + 7 *
stride] - dst[offset + x + 6 *
stride];
345 b = dst[offset + x + 8 *
stride] - dst[offset + x + 7 *
stride];
346 c = dst[offset + x + 9 *
stride] - dst[offset + x + 8 *
stride];
356 if (!(top_damage && bottom_damage))
360 dst[offset + x + 7 *
stride] = cm[dst[offset + x + 7 *
stride] + ((d * 7) >> 4)];
361 dst[offset + x + 6 *
stride] = cm[dst[offset + x + 6 *
stride] + ((d * 5) >> 4)];
362 dst[offset + x + 5 *
stride] = cm[dst[offset + x + 5 *
stride] + ((d * 3) >> 4)];
363 dst[offset + x + 4 *
stride] = cm[dst[offset + x + 4 *
stride] + ((d * 1) >> 4)];
366 dst[offset + x + 8 *
stride] = cm[dst[offset + x + 8 *
stride] - ((d * 7) >> 4)];
367 dst[offset + x + 9 *
stride] = cm[dst[offset + x + 9 *
stride] - ((d * 5) >> 4)];
368 dst[offset + x + 10 *
stride] = cm[dst[offset + x + 10 *
stride] - ((d * 3) >> 4)];
369 dst[offset + x + 11 *
stride] = cm[dst[offset + x + 11 *
stride] - ((d * 1) >> 4)];
381 #define MV_UNCHANGED 1
385 int i,
depth, num_avail;
386 int mb_x, mb_y, mot_step, mot_stride;
391 for (i = 0; i < s->
mb_num; i++) {
407 const int mot_index= (mb_x + mb_y*mot_stride) * mot_step;
415 num_avail <= mb_width / 2) {
416 for (mb_y = 0; mb_y < s->
mb_height; mb_y++) {
417 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
418 const int mb_xy = mb_x + mb_y * s->
mb_stride;
435 for (depth = 0; ; depth++) {
436 int changed,
pass, none_left;
440 for (pass = 0; (changed || pass < 2) && pass < 10; pass++) {
445 for (mb_y = 0; mb_y < s->
mb_height; mb_y++) {
446 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
447 const int mb_xy = mb_x + mb_y * s->
mb_stride;
448 int mv_predictor[8][2] = { { 0 } };
452 int best_score = 256 * 256 * 256 * 64;
454 const int mot_index = (mb_x + mb_y * mot_stride) * mot_step;
455 int prev_x = 0, prev_y = 0, prev_ref = 0;
457 if ((mb_x ^ mb_y ^ pass) & 1)
466 if (mb_x > 0 && fixed[mb_xy - 1] ==
MV_FROZEN)
468 if (mb_x + 1 < mb_width && fixed[mb_xy + 1] ==
MV_FROZEN)
470 if (mb_y > 0 && fixed[mb_xy - mb_stride] ==
MV_FROZEN)
472 if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride] ==
MV_FROZEN)
478 if (mb_x > 0 && fixed[mb_xy - 1 ] ==
MV_CHANGED)
480 if (mb_x + 1 < mb_width && fixed[mb_xy + 1 ] ==
MV_CHANGED)
482 if (mb_y > 0 && fixed[mb_xy - mb_stride] ==
MV_CHANGED)
484 if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride] ==
MV_CHANGED)
486 if (j == 0 && pass > 1)
491 if (mb_x > 0 && fixed[mb_xy - 1]) {
492 mv_predictor[pred_count][0] =
494 mv_predictor[pred_count][1] =
500 if (mb_x + 1 < mb_width && fixed[mb_xy + 1]) {
501 mv_predictor[pred_count][0] =
503 mv_predictor[pred_count][1] =
509 if (mb_y > 0 && fixed[mb_xy - mb_stride]) {
510 mv_predictor[pred_count][0] =
512 mv_predictor[pred_count][1] =
518 if (mb_y + 1<mb_height && fixed[mb_xy + mb_stride]) {
519 mv_predictor[pred_count][0] =
521 mv_predictor[pred_count][1] =
530 if (pred_count > 1) {
531 int sum_x = 0, sum_y = 0, sum_r = 0;
532 int max_x, max_y, min_x, min_y, max_r, min_r;
534 for (j = 0; j < pred_count; j++) {
535 sum_x += mv_predictor[j][0];
536 sum_y += mv_predictor[j][1];
538 if (j && ref[j] != ref[j - 1])
539 goto skip_mean_and_median;
543 mv_predictor[pred_count][0] = sum_x / j;
544 mv_predictor[pred_count][1] = sum_y / j;
545 ref[pred_count] = sum_r / j;
548 if (pred_count >= 3) {
549 min_y = min_x = min_r = 99999;
550 max_y = max_x = max_r = -99999;
552 min_x = min_y = max_x = max_y = min_r = max_r = 0;
554 for (j = 0; j < pred_count; j++) {
555 max_x =
FFMAX(max_x, mv_predictor[j][0]);
556 max_y =
FFMAX(max_y, mv_predictor[j][1]);
557 max_r =
FFMAX(max_r, ref[j]);
558 min_x =
FFMIN(min_x, mv_predictor[j][0]);
559 min_y =
FFMIN(min_y, mv_predictor[j][1]);
560 min_r =
FFMIN(min_r, ref[j]);
562 mv_predictor[pred_count + 1][0] = sum_x - max_x - min_x;
563 mv_predictor[pred_count + 1][1] = sum_y - max_y - min_y;
564 ref[pred_count + 1] = sum_r - max_r - min_r;
566 if (pred_count == 4) {
567 mv_predictor[pred_count + 1][0] /= 2;
568 mv_predictor[pred_count + 1][1] /= 2;
569 ref[pred_count + 1] /= 2;
574 skip_mean_and_median:
578 if (!fixed[mb_xy] && 0) {
598 mv_predictor[pred_count][0] = prev_x;
599 mv_predictor[pred_count][1] = prev_y;
600 ref[pred_count] = prev_ref;
605 for (j = 0; j < pred_count; j++) {
609 mb_x * 16 + mb_y * 16 * linesize[0];
612 s->
mv[0][0][0] = mv_predictor[j][0];
614 s->
mv[0][0][1] = mv_predictor[j][1];
623 if (mb_x > 0 && fixed[mb_xy - 1]) {
625 for (k = 0; k < 16; k++)
626 score +=
FFABS(src[k * linesize[0] - 1] -
627 src[k * linesize[0]]);
629 if (mb_x + 1 < mb_width && fixed[mb_xy + 1]) {
631 for (k = 0; k < 16; k++)
632 score +=
FFABS(src[k * linesize[0] + 15] -
633 src[k * linesize[0] + 16]);
635 if (mb_y > 0 && fixed[mb_xy - mb_stride]) {
637 for (k = 0; k < 16; k++)
638 score +=
FFABS(src[k - linesize[0]] - src[k]);
640 if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride]) {
642 for (k = 0; k < 16; k++)
643 score +=
FFABS(src[k + linesize[0] * 15] -
644 src[k + linesize[0] * 16]);
647 if (score <= best_score) {
652 score_sum += best_score;
653 s->
mv[0][0][0] = mv_predictor[best_pred][0];
654 s->
mv[0][0][1] = mv_predictor[best_pred][1];
656 for (i = 0; i < mot_step; i++)
657 for (j = 0; j < mot_step; j++) {
666 if (s->
mv[0][0][0] != prev_x || s->
mv[0][0][1] != prev_y) {
678 for (i = 0; i < s->
mb_num; i++) {
688 int is_intra_likely, i, j, undamaged_count, skip_amount, mb_x, mb_y;
697 for (i = 0; i < s->
mb_num; i++) {
704 if (undamaged_count < 5)
713 skip_amount =
FFMAX(undamaged_count / 50, 1);
717 for (mb_y = 0; mb_y < s->
mb_height - 1; mb_y++) {
718 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
720 const int mb_xy = mb_x + mb_y * s->
mb_stride;
728 if ((j % skip_amount) != 0)
734 mb_x * 16 + mb_y * 16 * linesize[0];
736 mb_x * 16 + mb_y * 16 * linesize[0];
743 is_intra_likely += s->
mecc.
sad[0](
NULL, last_mb_ptr, mb_ptr,
746 is_intra_likely -= s->
mecc.
sad[0](
NULL, last_mb_ptr,
747 last_mb_ptr + linesize[0] * 16,
758 return is_intra_likely > 0;
796 int endx,
int endy,
int status)
798 const int start_i = av_clip(startx + starty * s->
mb_width, 0, s->
mb_num - 1);
799 const int end_i = av_clip(endx + endy * s->
mb_width, 0, s->
mb_num);
807 if (start_i > end_i || start_xy > end_xy) {
809 "internal error, slice end before start\n");
837 (end_xy - start_xy) *
sizeof(
uint8_t));
840 for (i = start_xy; i < end_xy; i++)
867 int *linesize =
NULL;
868 int i, mb_x, mb_y, error, error_type, dc_error, mv_error, ac_error;
870 int threshold_part[4] = { 100, 100, 100 };
885 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
920 for (i = 0; i < 2; i++) {
929 for (i = 0; i < 2; i++) {
940 for (mb_y = 0; mb_y < s->
mb_height; mb_y++) {
941 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
952 for (error_type = 1; error_type <= 3; error_type++) {
955 for (i = s->
mb_num - 1; i >= 0; i--) {
959 if (error & (1 << error_type))
961 if (error & (8 << error_type))
977 for (i = s->
mb_num - 1; i >= 0; i--) {
1025 for (error_type = 1; error_type <= 3; error_type++) {
1026 for (i = s->
mb_num - 1; i >= 0; i--) {
1032 if (error & (1 << error_type))
1036 if (distance < threshold_part[error_type - 1])
1039 if (distance < threshold)
1051 for (i = 0; i < s->
mb_num; i++) {
1065 for (i = 0; i < s->
mb_num; i++) {
1075 dc_error = ac_error = mv_error = 0;
1076 for (i = 0; i < s->
mb_num; i++) {
1092 for (i = 0; i < s->
mb_num; i++) {
1098 if (is_intra_likely)
1107 for (i = 0; i < s->
mb_num; i++) {
1114 for (mb_y = 0; mb_y < s->
mb_height; mb_y++) {
1115 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
1116 const int mb_xy = mb_x + mb_y * s->
mb_stride;
1132 int mb_index = mb_x * 2 + mb_y * 2 * s->
b8_stride;
1135 for (j = 0; j < 4; j++) {
1146 mv_dir, mv_type, &s->
mv, mb_x, mb_y, 0, 0);
1152 for (mb_y = 0; mb_y < s->
mb_height; mb_y++) {
1153 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
1154 int xy = mb_x * 2 + mb_y * 2 * s->
b8_stride;
1155 const int mb_xy = mb_x + mb_y * s->
mb_stride;
1202 for (mb_y = 0; mb_y < s->
mb_height; mb_y++) {
1203 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
1204 int dc, dcu, dcv,
y,
n;
1206 uint8_t *dest_y, *dest_cb, *dest_cr;
1207 const int mb_xy = mb_x + mb_y * s->
mb_stride;
1217 dest_y = s->
cur_pic.
f->
data[0] + mb_x * 16 + mb_y * 16 * linesize[0];
1218 dest_cb = s->
cur_pic.
f->
data[1] + mb_x * 8 + mb_y * 8 * linesize[1];
1219 dest_cr = s->
cur_pic.
f->
data[2] + mb_x * 8 + mb_y * 8 * linesize[2];
1222 for (n = 0; n < 4; n++) {
1224 for (y = 0; y < 8; y++) {
1226 for (x = 0; x < 8; x++)
1227 dc += dest_y[x + (n & 1) * 8 +
1228 (y + (n >> 1) * 8) * linesize[0]];
1230 dc_ptr[(n & 1) + (n >> 1) * s->
b8_stride] = (dc + 4) >> 3;
1237 for (y = 0; y < 8; y++) {
1239 for (x = 0; x < 8; x++) {
1240 dcu += dest_cb[x + y * linesize[1]];
1241 dcv += dest_cr[x + y * linesize[2]];
1260 for (mb_y = 0; mb_y < s->
mb_height; mb_y++) {
1261 for (mb_x = 0; mb_x < s->
mb_width; mb_x++) {
1262 uint8_t *dest_y, *dest_cb, *dest_cr;
1263 const int mb_xy = mb_x + mb_y * s->
mb_stride;
1273 dest_y = s->
cur_pic.
f->
data[0] + mb_x * 16 + mb_y * 16 * linesize[0];
1274 dest_cb = s->
cur_pic.
f->
data[1] + mb_x * 8 + mb_y * 8 * linesize[1];
1275 dest_cr = s->
cur_pic.
f->
data[2] + mb_x * 8 + mb_y * 8 * linesize[2];
1277 dest_cb = dest_cr =
NULL;
1279 put_dc(s, dest_y, dest_cb, dest_cr, mb_x, mb_y);
1307 for (i = 0; i < s->
mb_num; i++) {
1319 for (i = 0; i < 2; i++) {
av_cold void ff_me_cmp_init(MECmpContext *c, AVCodecContext *avctx)
const struct AVCodec * codec
#define avpriv_atomic_int_add_and_fetch
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it...
ptrdiff_t const GLvoid * data
AVBufferRef * motion_val_buf[2]
#define FF_EC_FAVOR_INTER
#define AV_LOG_WARNING
Something somehow does not look correct.
static void put_dc(ERContext *s, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int mb_x, int mb_y)
Replace the current MB with a flat dc-only version.
void ff_er_frame_end(ERContext *s)
static void v_block_filter(ERContext *s, uint8_t *dst, int w, int h, int stride, int is_luma)
simple vertical deblocking filter used for error resilience
static void filter181(int16_t *data, int width, int height, int stride)
#define VP_START
< current MB is the first after a resync marker
static void guess_mv(ERContext *s)
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
struct AVHWAccel * hwaccel
Hardware accelerator in use.
#define av_assert0(cond)
assert() equivalent, that is always enabled.
AVBufferRef * ref_index_buf[2]
static const uint32_t color[16+AV_CLASS_CATEGORY_NB]
Multithreading support functions.
#define CODEC_CAP_HWACCEL_VDPAU
Codec can export data for HW decoding (VDPAU).
#define avpriv_atomic_int_set
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
void(* decode_mb)(struct MpegEncContext *s)
Called for every Macroblock in a slice.
static void guess_dc(ERContext *s, int16_t *dc, int w, int h, int stride, int is_luma)
guess the dc of blocks which do not have an undamaged dc
int lowres
low resolution decoding, 1-> 1/2 size, 2->1/4 size
Libavcodec version macros.
int width
width and height of the video frame
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
static const uint16_t mask[17]
#define AV_EF_EXPLODE
abort decoding on minor error detection
int active_thread_type
Which multithreading methods are in use by the codec.
int error_concealment
error concealment flags
int capabilities
Codec capabilities.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
void(* decode_mb)(void *opaque, int ref, int mv_dir, int mv_type, int(*mv)[2][4][2], int mb_x, int mb_y, int mb_intra, int mb_skipped)
static const uint8_t offset[127][2]
Libavcodec external API header.
static float distance(float x, float y, int band)
uint8_t * error_status_table
common internal API header
useful rectangle filling function
enum AVPictureType pict_type
Picture type of the frame.
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
int skip_top
Number of macroblock rows at the top which are skipped.
preferred ID for MPEG-1/2 video decoding
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames...
#define MV_TYPE_16X16
1 vector for the whole mb
#define AV_LOG_INFO
Standard information.
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
uint8_t * data
The data buffer.
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
BYTE int const BYTE int int int height
static int weight(int i, int blen, int offset)
int skip_bottom
Number of macroblock rows at the bottom which are skipped.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
GLint GLenum GLboolean GLsizei stride
static int is_intra_more_likely(ERContext *s)
int16_t(*[2] motion_val)[2]
static int er_supported(ERContext *s)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> dc
void ff_er_frame_start(ERContext *s)
static void h_block_filter(ERContext *s, uint8_t *dst, int w, int h, int stride, int is_luma)
simple horizontal deblocking filter used for error resilience
#define av_malloc_array(a, b)
int(* decode_slice)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Callback for each slice.
#define MV_TYPE_8X8
4 vectors (h263, mpeg4 4MV)
static void set_mv_strides(ERContext *s, int *mv_step, int *stride)