FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
aacdec_mips.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012
3  * MIPS Technologies, Inc., California.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  * notice, this list of conditions and the following disclaimer in the
12  * documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the MIPS Technologies, Inc., nor the names of its
14  * contributors may be used to endorse or promote products derived from
15  * this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * Authors: Darko Laus (darko@mips.com)
30  * Djordje Pesut (djordje@mips.com)
31  * Mirjana Vulin (mvulin@mips.com)
32  *
33  * This file is part of FFmpeg.
34  *
35  * FFmpeg is free software; you can redistribute it and/or
36  * modify it under the terms of the GNU Lesser General Public
37  * License as published by the Free Software Foundation; either
38  * version 2.1 of the License, or (at your option) any later version.
39  *
40  * FFmpeg is distributed in the hope that it will be useful,
41  * but WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
43  * Lesser General Public License for more details.
44  *
45  * You should have received a copy of the GNU Lesser General Public
46  * License along with FFmpeg; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
48  */
49 
50 /**
51  * @file
52  * Reference: libavcodec/aacdec.c
53  */
54 
55 #include "libavcodec/aac.h"
56 #include "aacdec_mips.h"
57 #include "libavcodec/aactab.h"
58 #include "libavcodec/sinewin.h"
59 #include "libavutil/mips/asmdefs.h"
60 
61 #if HAVE_INLINE_ASM
62 static av_always_inline void float_copy(float *dst, const float *src, int count)
63 {
64  // Copy 'count' floats from src to dst
65  const float *loop_end = src + count;
66  int temp[8];
67 
68  // count must be a multiple of 8
69  av_assert2(count % 8 == 0);
70 
71  // loop unrolled 8 times
72  __asm__ volatile (
73  ".set push \n\t"
74  ".set noreorder \n\t"
75  "1: \n\t"
76  "lw %[temp0], 0(%[src]) \n\t"
77  "lw %[temp1], 4(%[src]) \n\t"
78  "lw %[temp2], 8(%[src]) \n\t"
79  "lw %[temp3], 12(%[src]) \n\t"
80  "lw %[temp4], 16(%[src]) \n\t"
81  "lw %[temp5], 20(%[src]) \n\t"
82  "lw %[temp6], 24(%[src]) \n\t"
83  "lw %[temp7], 28(%[src]) \n\t"
84  PTR_ADDIU "%[src], %[src], 32 \n\t"
85  "sw %[temp0], 0(%[dst]) \n\t"
86  "sw %[temp1], 4(%[dst]) \n\t"
87  "sw %[temp2], 8(%[dst]) \n\t"
88  "sw %[temp3], 12(%[dst]) \n\t"
89  "sw %[temp4], 16(%[dst]) \n\t"
90  "sw %[temp5], 20(%[dst]) \n\t"
91  "sw %[temp6], 24(%[dst]) \n\t"
92  "sw %[temp7], 28(%[dst]) \n\t"
93  "bne %[src], %[loop_end], 1b \n\t"
94  PTR_ADDIU "%[dst], %[dst], 32 \n\t"
95  ".set pop \n\t"
96 
97  : [temp0]"=&r"(temp[0]), [temp1]"=&r"(temp[1]),
98  [temp2]"=&r"(temp[2]), [temp3]"=&r"(temp[3]),
99  [temp4]"=&r"(temp[4]), [temp5]"=&r"(temp[5]),
100  [temp6]"=&r"(temp[6]), [temp7]"=&r"(temp[7]),
101  [src]"+r"(src), [dst]"+r"(dst)
102  : [loop_end]"r"(loop_end)
103  : "memory"
104  );
105 }
106 
107 static av_always_inline int lcg_random(unsigned previous_val)
108 {
109  union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 };
110  return v.s;
111 }
112 
113 static void imdct_and_windowing_mips(AACContext *ac, SingleChannelElement *sce)
114 {
115  IndividualChannelStream *ics = &sce->ics;
116  float *in = sce->coeffs;
117  float *out = sce->ret;
118  float *saved = sce->saved;
119  const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
120  const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
121  const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
122  float *buf = ac->buf_mdct;
123  int i;
124 
125  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
126  for (i = 0; i < 1024; i += 128)
127  ac->mdct_small.imdct_half(&ac->mdct_small, buf + i, in + i);
128  } else
129  ac->mdct.imdct_half(&ac->mdct, buf, in);
130 
131  /* window overlapping
132  * NOTE: To simplify the overlapping code, all 'meaningless' short to long
133  * and long to short transitions are considered to be short to short
134  * transitions. This leaves just two cases (long to long and short to short)
135  * with a little special sauce for EIGHT_SHORT_SEQUENCE.
136  */
137  if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
139  ac->fdsp->vector_fmul_window( out, saved, buf, lwindow_prev, 512);
140  } else {
141  float_copy(out, saved, 448);
142 
143  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
144  {
145  float wi;
146  float wj;
147  int i;
148  float temp0, temp1, temp2, temp3;
149  float *dst0 = out + 448 + 0*128;
150  float *dst1 = dst0 + 64 + 63;
151  float *dst2 = saved + 63;
152  float *win0 = (float*)swindow;
153  float *win1 = win0 + 64 + 63;
154  float *win0_prev = (float*)swindow_prev;
155  float *win1_prev = win0_prev + 64 + 63;
156  float *src0_prev = saved + 448;
157  float *src1_prev = buf + 0*128 + 63;
158  float *src0 = buf + 0*128 + 64;
159  float *src1 = buf + 1*128 + 63;
160 
161  for(i = 0; i < 64; i++)
162  {
163  temp0 = src0_prev[0];
164  temp1 = src1_prev[0];
165  wi = *win0_prev;
166  wj = *win1_prev;
167  temp2 = src0[0];
168  temp3 = src1[0];
169  dst0[0] = temp0 * wj - temp1 * wi;
170  dst1[0] = temp0 * wi + temp1 * wj;
171 
172  wi = *win0;
173  wj = *win1;
174 
175  temp0 = src0[128];
176  temp1 = src1[128];
177  dst0[128] = temp2 * wj - temp3 * wi;
178  dst1[128] = temp2 * wi + temp3 * wj;
179 
180  temp2 = src0[256];
181  temp3 = src1[256];
182  dst0[256] = temp0 * wj - temp1 * wi;
183  dst1[256] = temp0 * wi + temp1 * wj;
184  dst0[384] = temp2 * wj - temp3 * wi;
185  dst1[384] = temp2 * wi + temp3 * wj;
186 
187  temp0 = src0[384];
188  temp1 = src1[384];
189  dst0[512] = temp0 * wj - temp1 * wi;
190  dst2[0] = temp0 * wi + temp1 * wj;
191 
192  src0++;
193  src1--;
194  src0_prev++;
195  src1_prev--;
196  win0++;
197  win1--;
198  win0_prev++;
199  win1_prev--;
200  dst0++;
201  dst1--;
202  dst2--;
203  }
204  }
205  } else {
206  ac->fdsp->vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, 64);
207  float_copy(out + 576, buf + 64, 448);
208  }
209  }
210 
211  // buffer update
212  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
213  ac->fdsp->vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 64);
214  ac->fdsp->vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64);
215  ac->fdsp->vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64);
216  float_copy(saved + 448, buf + 7*128 + 64, 64);
217  } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
218  float_copy(saved, buf + 512, 448);
219  float_copy(saved + 448, buf + 7*128 + 64, 64);
220  } else { // LONG_STOP or ONLY_LONG
221  float_copy(saved, buf + 512, 512);
222  }
223 }
224 
225 static void apply_ltp_mips(AACContext *ac, SingleChannelElement *sce)
226 {
227  const LongTermPrediction *ltp = &sce->ics.ltp;
228  const uint16_t *offsets = sce->ics.swb_offset;
229  int i, sfb;
230  int j, k;
231 
232  if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
233  float *predTime = sce->ret;
234  float *predFreq = ac->buf_mdct;
235  float *p_predTime;
236  int16_t num_samples = 2048;
237 
238  if (ltp->lag < 1024)
239  num_samples = ltp->lag + 1024;
240  j = (2048 - num_samples) >> 2;
241  k = (2048 - num_samples) & 3;
242  p_predTime = &predTime[num_samples];
243 
244  for (i = 0; i < num_samples; i++)
245  predTime[i] = sce->ltp_state[i + 2048 - ltp->lag] * ltp->coef;
246  for (i = 0; i < j; i++) {
247 
248  /* loop unrolled 4 times */
249  __asm__ volatile (
250  "sw $0, 0(%[p_predTime]) \n\t"
251  "sw $0, 4(%[p_predTime]) \n\t"
252  "sw $0, 8(%[p_predTime]) \n\t"
253  "sw $0, 12(%[p_predTime]) \n\t"
254  PTR_ADDIU "%[p_predTime], %[p_predTime], 16 \n\t"
255 
256  : [p_predTime]"+r"(p_predTime)
257  :
258  : "memory"
259  );
260  }
261  for (i = 0; i < k; i++) {
262 
263  __asm__ volatile (
264  "sw $0, 0(%[p_predTime]) \n\t"
265  PTR_ADDIU "%[p_predTime], %[p_predTime], 4 \n\t"
266 
267  : [p_predTime]"+r"(p_predTime)
268  :
269  : "memory"
270  );
271  }
272 
273  ac->windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics);
274 
275  if (sce->tns.present)
276  ac->apply_tns(predFreq, &sce->tns, &sce->ics, 0);
277 
278  for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++)
279  if (ltp->used[sfb])
280  for (i = offsets[sfb]; i < offsets[sfb + 1]; i++)
281  sce->coeffs[i] += predFreq[i];
282  }
283 }
284 
285 #if HAVE_MIPSFPU
286 static av_always_inline void fmul_and_reverse(float *dst, const float *src0, const float *src1, int count)
287 {
288  /* Multiply 'count' floats in src0 by src1 and store the results in dst in reverse */
289  /* This should be equivalent to a normal fmul, followed by reversing dst */
290 
291  // count must be a multiple of 4
292  av_assert2(count % 4 == 0);
293 
294  // move src0 and src1 to the last element of their arrays
295  src0 += count - 1;
296  src1 += count - 1;
297 
298  for (; count > 0; count -= 4){
299  float temp[12];
300 
301  /* loop unrolled 4 times */
302  __asm__ volatile (
303  "lwc1 %[temp0], 0(%[ptr2]) \n\t"
304  "lwc1 %[temp1], -4(%[ptr2]) \n\t"
305  "lwc1 %[temp2], -8(%[ptr2]) \n\t"
306  "lwc1 %[temp3], -12(%[ptr2]) \n\t"
307  "lwc1 %[temp4], 0(%[ptr3]) \n\t"
308  "lwc1 %[temp5], -4(%[ptr3]) \n\t"
309  "lwc1 %[temp6], -8(%[ptr3]) \n\t"
310  "lwc1 %[temp7], -12(%[ptr3]) \n\t"
311  "mul.s %[temp8], %[temp0], %[temp4] \n\t"
312  "mul.s %[temp9], %[temp1], %[temp5] \n\t"
313  "mul.s %[temp10], %[temp2], %[temp6] \n\t"
314  "mul.s %[temp11], %[temp3], %[temp7] \n\t"
315  "swc1 %[temp8], 0(%[ptr1]) \n\t"
316  "swc1 %[temp9], 4(%[ptr1]) \n\t"
317  "swc1 %[temp10], 8(%[ptr1]) \n\t"
318  "swc1 %[temp11], 12(%[ptr1]) \n\t"
319  PTR_ADDIU "%[ptr1], %[ptr1], 16 \n\t"
320  PTR_ADDIU "%[ptr2], %[ptr2], -16 \n\t"
321  PTR_ADDIU "%[ptr3], %[ptr3], -16 \n\t"
322 
323  : [temp0]"=&f"(temp[0]), [temp1]"=&f"(temp[1]),
324  [temp2]"=&f"(temp[2]), [temp3]"=&f"(temp[3]),
325  [temp4]"=&f"(temp[4]), [temp5]"=&f"(temp[5]),
326  [temp6]"=&f"(temp[6]), [temp7]"=&f"(temp[7]),
327  [temp8]"=&f"(temp[8]), [temp9]"=&f"(temp[9]),
328  [temp10]"=&f"(temp[10]), [temp11]"=&f"(temp[11]),
329  [ptr1]"+r"(dst), [ptr2]"+r"(src0), [ptr3]"+r"(src1)
330  :
331  : "memory"
332  );
333  }
334 }
335 
336 static void update_ltp_mips(AACContext *ac, SingleChannelElement *sce)
337 {
338  IndividualChannelStream *ics = &sce->ics;
339  float *saved = sce->saved;
340  float *saved_ltp = sce->coeffs;
341  const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
342  const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
343  float temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7;
344 
345  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
346  float *p_saved_ltp = saved_ltp + 576;
347  float *loop_end1 = p_saved_ltp + 448;
348 
349  float_copy(saved_ltp, saved, 512);
350 
351  /* loop unrolled 8 times */
352  __asm__ volatile (
353  "1: \n\t"
354  "sw $0, 0(%[p_saved_ltp]) \n\t"
355  "sw $0, 4(%[p_saved_ltp]) \n\t"
356  "sw $0, 8(%[p_saved_ltp]) \n\t"
357  "sw $0, 12(%[p_saved_ltp]) \n\t"
358  "sw $0, 16(%[p_saved_ltp]) \n\t"
359  "sw $0, 20(%[p_saved_ltp]) \n\t"
360  "sw $0, 24(%[p_saved_ltp]) \n\t"
361  "sw $0, 28(%[p_saved_ltp]) \n\t"
362  PTR_ADDIU "%[p_saved_ltp],%[p_saved_ltp], 32 \n\t"
363  "bne %[p_saved_ltp], %[loop_end1], 1b \n\t"
364 
365  : [p_saved_ltp]"+r"(p_saved_ltp)
366  : [loop_end1]"r"(loop_end1)
367  : "memory"
368  );
369 
370  ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
371  fmul_and_reverse(saved_ltp + 512, ac->buf_mdct + 960, swindow, 64);
372  } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
373  float *buff0 = saved;
374  float *buff1 = saved_ltp;
375  float *loop_end = saved + 448;
376 
377  /* loop unrolled 8 times */
378  __asm__ volatile (
379  ".set push \n\t"
380  ".set noreorder \n\t"
381  "1: \n\t"
382  "lw %[temp0], 0(%[src]) \n\t"
383  "lw %[temp1], 4(%[src]) \n\t"
384  "lw %[temp2], 8(%[src]) \n\t"
385  "lw %[temp3], 12(%[src]) \n\t"
386  "lw %[temp4], 16(%[src]) \n\t"
387  "lw %[temp5], 20(%[src]) \n\t"
388  "lw %[temp6], 24(%[src]) \n\t"
389  "lw %[temp7], 28(%[src]) \n\t"
390  PTR_ADDIU "%[src], %[src], 32 \n\t"
391  "sw %[temp0], 0(%[dst]) \n\t"
392  "sw %[temp1], 4(%[dst]) \n\t"
393  "sw %[temp2], 8(%[dst]) \n\t"
394  "sw %[temp3], 12(%[dst]) \n\t"
395  "sw %[temp4], 16(%[dst]) \n\t"
396  "sw %[temp5], 20(%[dst]) \n\t"
397  "sw %[temp6], 24(%[dst]) \n\t"
398  "sw %[temp7], 28(%[dst]) \n\t"
399  "sw $0, 2304(%[dst]) \n\t"
400  "sw $0, 2308(%[dst]) \n\t"
401  "sw $0, 2312(%[dst]) \n\t"
402  "sw $0, 2316(%[dst]) \n\t"
403  "sw $0, 2320(%[dst]) \n\t"
404  "sw $0, 2324(%[dst]) \n\t"
405  "sw $0, 2328(%[dst]) \n\t"
406  "sw $0, 2332(%[dst]) \n\t"
407  "bne %[src], %[loop_end], 1b \n\t"
408  PTR_ADDIU "%[dst], %[dst], 32 \n\t"
409  ".set pop \n\t"
410 
411  : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1),
412  [temp2]"=&r"(temp2), [temp3]"=&r"(temp3),
413  [temp4]"=&r"(temp4), [temp5]"=&r"(temp5),
414  [temp6]"=&r"(temp6), [temp7]"=&r"(temp7),
415  [src]"+r"(buff0), [dst]"+r"(buff1)
416  : [loop_end]"r"(loop_end)
417  : "memory"
418  );
419  ac->fdsp->vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
420  fmul_and_reverse(saved_ltp + 512, ac->buf_mdct + 960, swindow, 64);
421  } else { // LONG_STOP or ONLY_LONG
422  ac->fdsp->vector_fmul_reverse(saved_ltp, ac->buf_mdct + 512, &lwindow[512], 512);
423  fmul_and_reverse(saved_ltp + 512, ac->buf_mdct + 512, lwindow, 512);
424  }
425 
426  float_copy(sce->ltp_state, sce->ltp_state + 1024, 1024);
427  float_copy(sce->ltp_state + 1024, sce->ret, 1024);
428  float_copy(sce->ltp_state + 2048, saved_ltp, 1024);
429 }
430 #endif /* HAVE_MIPSFPU */
431 #endif /* HAVE_INLINE_ASM */
432 
434 {
435 #if HAVE_INLINE_ASM
436  c->imdct_and_windowing = imdct_and_windowing_mips;
437  c->apply_ltp = apply_ltp_mips;
438 #if HAVE_MIPSFPU
439  c->update_ltp = update_ltp_mips;
440 #endif /* HAVE_MIPSFPU */
441 #endif /* HAVE_INLINE_ASM */
442 }
AVFloatDSPContext * fdsp
Definition: aac.h:331
const char * s
Definition: avisynth_c.h:768
uint8_t use_kb_window[2]
If set, use Kaiser-Bessel window, otherwise use a sine window.
Definition: aac.h:177
INTFLOAT buf_mdct[1024]
Definition: aac.h:316
MIPS assembly defines from sys/asm.h but rewritten for use with C inline assembly (rather than from w...
else temp
Definition: vf_mcdeint.c:259
INTFLOAT * ret
PCM output.
Definition: aac.h:269
void(* update_ltp)(AACContext *ac, SingleChannelElement *sce)
Definition: aac.h:364
void(* imdct_and_windowing)(AACContext *ac, SingleChannelElement *sce)
Definition: aac.h:358
void(* vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats, and store the result in a vector of floats...
Definition: float_dsp.h:138
#define MAX_LTP_LONG_SFB
Definition: aac.h:51
Reference: libavcodec/aacdec.c.
#define src
Definition: vp8dsp.c:254
static av_always_inline int lcg_random(unsigned previous_val)
linear congruential pseudorandom number generator
const uint16_t * swb_offset
table of offsets to the lowest spectral coefficient of a scalefactor band, sfb, for a particular wind...
Definition: aac.h:181
void(* vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, int len)
Overlap/add with window function.
Definition: float_dsp.h:103
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
TemporalNoiseShaping tns
Definition: aac.h:250
FFTContext mdct_small
Definition: aac.h:324
float ff_aac_kbd_long_1024[1024]
Definition: aactab.c:38
uint8_t max_sfb
number of scalefactor bands per group
Definition: aac.h:175
GLsizei count
Definition: opengl_enc.c:109
enum WindowSequence window_sequence[2]
Definition: aac.h:176
INTFLOAT ltp_state[3072]
time signal for LTP
Definition: aac.h:265
#define FFMIN(a, b)
Definition: common.h:96
AAC definitions and structures.
#define src1
Definition: h264pred.c:139
float ff_aac_kbd_short_128[128]
Definition: aactab.c:39
Long Term Prediction.
Definition: aac.h:163
IndividualChannelStream ics
Definition: aac.h:249
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
void * buf
Definition: avisynth_c.h:690
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:108
#define PTR_ADDIU
Definition: asmdefs.h:48
void(* apply_tns)(INTFLOAT coef[1024], TemporalNoiseShaping *tns, IndividualChannelStream *ics, int decode)
Definition: aac.h:360
#define src0
Definition: h264pred.c:138
main AAC context
Definition: aac.h:293
#define u(width,...)
LongTermPrediction ltp
Definition: aac.h:180
INTFLOAT coeffs[1024]
coefficients for IMDCT, maybe processed
Definition: aac.h:262
int16_t lag
Definition: aac.h:165
void(* apply_ltp)(AACContext *ac, SingleChannelElement *sce)
Definition: aac.h:359
INTFLOAT saved[1536]
overlap
Definition: aac.h:263
Single Channel Element - used for both SCE and LFE elements.
Definition: aac.h:248
static double c[64]
void(* windowing_and_mdct_ltp)(AACContext *ac, INTFLOAT *out, INTFLOAT *in, IndividualChannelStream *ics)
Definition: aac.h:362
Individual Channel Stream.
Definition: aac.h:174
INTFLOAT coef
Definition: aac.h:167
FILE * out
Definition: movenc.c:54
FFTContext mdct
Definition: aac.h:323
#define av_always_inline
Definition: attributes.h:39
int8_t used[MAX_LTP_LONG_SFB]
Definition: aac.h:168
void ff_aacdec_init_mips(AACContext *c)
Definition: aacdec_mips.c:433
AAC data declarations.
for(j=16;j >0;--j)