Go to the documentation of this file.
   63     uint16_t 
lut[4][256 * 256];  
 
   83 #define OFFSET(x) offsetof(LutContext, x) 
   84 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM 
  106     for (
i = 0; 
i < 4; 
i++) {
 
  113 #define YUV_FORMATS                                         \ 
  114     AV_PIX_FMT_YUV444P,  AV_PIX_FMT_YUV422P,  AV_PIX_FMT_YUV420P,    \ 
  115     AV_PIX_FMT_YUV411P,  AV_PIX_FMT_YUV410P,  AV_PIX_FMT_YUV440P,    \ 
  116     AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,   \ 
  117     AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,   \ 
  118     AV_PIX_FMT_YUVJ440P,                                             \ 
  119     AV_PIX_FMT_YUV444P9LE, AV_PIX_FMT_YUV422P9LE, AV_PIX_FMT_YUV420P9LE, \ 
  120     AV_PIX_FMT_YUV444P10LE, AV_PIX_FMT_YUV422P10LE, AV_PIX_FMT_YUV420P10LE, AV_PIX_FMT_YUV440P10LE, \ 
  121     AV_PIX_FMT_YUV444P12LE, AV_PIX_FMT_YUV422P12LE, AV_PIX_FMT_YUV420P12LE, AV_PIX_FMT_YUV440P12LE, \ 
  122     AV_PIX_FMT_YUV444P14LE, AV_PIX_FMT_YUV422P14LE, AV_PIX_FMT_YUV420P14LE, \ 
  123     AV_PIX_FMT_YUV444P16LE, AV_PIX_FMT_YUV422P16LE, AV_PIX_FMT_YUV420P16LE, \ 
  124     AV_PIX_FMT_YUVA444P16LE, AV_PIX_FMT_YUVA422P16LE, AV_PIX_FMT_YUVA420P16LE 
  126 #define RGB_FORMATS                             \ 
  127     AV_PIX_FMT_ARGB,         AV_PIX_FMT_RGBA,         \ 
  128     AV_PIX_FMT_ABGR,         AV_PIX_FMT_BGRA,         \ 
  129     AV_PIX_FMT_RGB24,        AV_PIX_FMT_BGR24,        \ 
  130     AV_PIX_FMT_RGB48LE,      AV_PIX_FMT_RGBA64LE,     \ 
  131     AV_PIX_FMT_GBRP,         AV_PIX_FMT_GBRAP,        \ 
  132     AV_PIX_FMT_GBRP9LE,      AV_PIX_FMT_GBRP10LE,     \ 
  133     AV_PIX_FMT_GBRAP10LE,                             \ 
  134     AV_PIX_FMT_GBRP12LE,     AV_PIX_FMT_GBRP14LE,     \ 
  135     AV_PIX_FMT_GBRP16LE,     AV_PIX_FMT_GBRAP12LE,    \ 
  138 #define GRAY_FORMATS                            \ 
  139     AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9LE, AV_PIX_FMT_GRAY10LE, \ 
  140     AV_PIX_FMT_GRAY12LE, AV_PIX_FMT_GRAY14LE, AV_PIX_FMT_GRAY16LE 
  168     return av_clip(
val, minval, maxval);
 
  182     return pow((
val-minval)/(maxval-minval), gamma) * (maxval-minval)+minval;
 
  194     double level = (
val - minval) / (maxval - minval);
 
  196                           : 1.099 * pow(
level, 1.0 / gamma) - 0.099;
 
  197     return level * (maxval - minval) + minval;
 
  200 static double (* 
const funcs1[])(
void *, double) = {
 
  223     s->hsub = 
desc->log2_chroma_w;
 
  224     s->vsub = 
desc->log2_chroma_h;
 
  228     s->is_16bit = 
desc->comp[0].depth > 8;
 
  266         min[
Y] = 16 * (1 << (
desc->comp[0].depth - 8));
 
  267         min[
U] = 16 * (1 << (
desc->comp[1].depth - 8));
 
  268         min[
V] = 16 * (1 << (
desc->comp[2].depth - 8));
 
  270         max[
Y] = 235 * (1 << (
desc->comp[0].depth - 8));
 
  271         max[
U] = 240 * (1 << (
desc->comp[1].depth - 8));
 
  272         max[
V] = 240 * (1 << (
desc->comp[2].depth - 8));
 
  273         max[
A] = (1 << 
desc->comp[0].depth) - 1;
 
  285     s->is_yuv = 
s->is_rgb = 0;
 
  294             s->step = 
s->step >> 1;
 
  309                    "Error when parsing the expression '%s' for the component %d and color %d.\n",
 
  328                        "Error when evaluating the expression '%s' for the value %d for the component %d.\n",
 
  348 #define LOAD_PACKED_COMMON\ 
  349     LutContext *s = ctx->priv;\ 
  350     const struct thread_data *td = arg;\ 
  353     const int w = td->w;\ 
  354     const int h = td->h;\ 
  355     AVFrame *in = td->in;\ 
  356     AVFrame *out = td->out;\ 
  357     const uint16_t (*tab)[256*256] = (const uint16_t (*)[256*256])s->lut;\ 
  358     const int step = s->step;\ 
  360     const int slice_start = (h *  jobnr   ) / nb_jobs;\ 
  361     const int slice_end   = (h * (jobnr+1)) / nb_jobs;\ 
  368     uint16_t *inrow, *outrow, *inrow0, *outrow0;
 
  369     const int in_linesize  =  
in->linesize[0] / 2;
 
  370     const int out_linesize = 
out->linesize[0] / 2;
 
  371     inrow0  = (uint16_t *)
in ->
data[0];
 
  372     outrow0 = (uint16_t *)
out->data[0];
 
  375         inrow  = inrow0 + 
i * in_linesize;
 
  376         outrow = outrow0 + 
i * out_linesize;
 
  377         for (j = 0; j < 
w; j++) {
 
  386             case 4:  outrow[3] = 
tab[3][inrow[3]]; 
 
  387             case 3:  outrow[2] = 
tab[2][inrow[2]]; 
 
  388             case 2:  outrow[1] = 
tab[1][inrow[1]]; 
 
  389             default: outrow[0] = 
tab[0][inrow[0]];
 
  405     uint8_t *inrow, *outrow, *inrow0, *outrow0;
 
  406     const int in_linesize  =  
in->linesize[0];
 
  407     const int out_linesize = 
out->linesize[0];
 
  408     inrow0  = 
in ->data[0];
 
  409     outrow0 = 
out->data[0];
 
  412         inrow  = inrow0 + 
i * in_linesize;
 
  413         outrow = outrow0 + 
i * out_linesize;
 
  414         for (j = 0; j < 
w; j++) {
 
  416             case 4:  outrow[3] = 
tab[3][inrow[3]]; 
 
  417             case 3:  outrow[2] = 
tab[2][inrow[2]]; 
 
  418             case 2:  outrow[1] = 
tab[1][inrow[1]]; 
 
  419             default: outrow[0] = 
tab[0][inrow[0]];
 
  429 #define LOAD_PLANAR_COMMON\ 
  430     LutContext *s = ctx->priv;\ 
  431     const struct thread_data *td = arg;\ 
  433     AVFrame *in = td->in;\ 
  434     AVFrame *out = td->out;\ 
  436 #define PLANAR_COMMON\ 
  437         int vsub = plane == 1 || plane == 2 ? s->vsub : 0;\ 
  438         int hsub = plane == 1 || plane == 2 ? s->hsub : 0;\ 
  439         int h = AV_CEIL_RSHIFT(td->h, vsub);\ 
  440         int w = AV_CEIL_RSHIFT(td->w, hsub);\ 
  441         const uint16_t *tab = s->lut[plane];\ 
  443         const int slice_start = (h *  jobnr   ) / nb_jobs;\ 
  444         const int slice_end   = (h * (jobnr+1)) / nb_jobs;\ 
  451     uint16_t *inrow, *outrow;
 
  453     for (plane = 0; plane < 4 && 
in->data[plane] && 
in->linesize[plane]; plane++) {
 
  456         const int in_linesize  =  
in->linesize[plane] / 2;
 
  457         const int out_linesize = 
out->linesize[plane] / 2;
 
  459         inrow  = (uint16_t *)
in ->
data[plane] + slice_start * in_linesize;
 
  460         outrow = (uint16_t *)
out->data[plane] + slice_start * out_linesize;
 
  463             for (j = 0; j < 
w; j++) {
 
  467                 outrow[j] = 
tab[inrow[j]];
 
  470             inrow  += in_linesize;
 
  471             outrow += out_linesize;
 
  485     for (plane = 0; plane < 4 && 
in->data[plane] && 
in->linesize[plane]; plane++) {
 
  488         const int in_linesize  =  
in->linesize[plane];
 
  489         const int out_linesize = 
out->linesize[plane];
 
  491         inrow  = 
in ->data[plane] + slice_start * in_linesize;
 
  492         outrow = 
out->data[plane] + slice_start * out_linesize;
 
  495             for (j = 0; j < 
w; j++)
 
  496                 outrow[j] = 
tab[inrow[j]];
 
  497             inrow  += in_linesize;
 
  498             outrow += out_linesize;
 
  505 #define PACKED_THREAD_DATA\ 
  506  struct thread_data td = {\ 
  513 #define PLANAR_THREAD_DATA\ 
  514  struct thread_data td = {\ 
  541     if (
s->is_rgb && 
s->is_16bit && !
s->is_planar) {
 
  546     } 
else if (
s->is_rgb && !
s->is_planar) {
 
  551     } 
else if (
s->is_16bit) {
 
  584 #define DEFINE_LUT_FILTER(name_, description_)                          \ 
  585     AVFilter ff_vf_##name_ = {                                          \ 
  587         .description   = NULL_IF_CONFIG_SMALL(description_),            \ 
  588         .priv_size     = sizeof(LutContext),                            \ 
  589         .priv_class    = &name_ ## _class,                              \ 
  590         .init          = name_##_init,                                  \ 
  592         .query_formats = query_formats,                                 \ 
  594         .outputs       = outputs,                                       \ 
  595         .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,        \ 
  598 #if CONFIG_LUT_FILTER 
  600 #define lut_options options 
  608 DEFINE_LUT_FILTER(lut, 
"Compute and apply a lookup table to the RGB/YUV input video.");
 
  611 #if CONFIG_LUTYUV_FILTER 
  613 #define lutyuv_options options 
  625 DEFINE_LUT_FILTER(lutyuv, 
"Compute and apply a lookup table to the YUV input video.");
 
  628 #if CONFIG_LUTRGB_FILTER 
  630 #define lutrgb_options options 
  642 DEFINE_LUT_FILTER(lutrgb, 
"Compute and apply a lookup table to the RGB input video.");
 
  645 #if CONFIG_NEGATE_FILTER 
  647 static const AVOption negate_options[] = {
 
  661     for (
i = 0; 
i < 4; 
i++) {
 
  662         s->comp_expr_str[
i] = 
av_strdup((
i == 3 && !
s->negate_alpha) ?
 
  664         if (!
s->comp_expr_str[
i]) {
 
  
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
 
@ AV_PIX_FMT_YUV420P9LE
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
 
static void direct(const float *in, const FFTComplex *ir, int len, float *out)
 
AVPixelFormat
Pixel format.
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
static double compute_gammaval709(void *opaque, double gamma)
Compute ITU Rec.709 gamma correction of value val.
 
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
 
static void comp(unsigned char *dst, ptrdiff_t dst_stride, unsigned char *src, ptrdiff_t src_stride, int add)
 
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
 
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
 
@ AV_PIX_FMT_YUV422P14LE
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
 
static const AVOption options[]
 
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
 
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
 
This structure describes decoded (raw) audio or video data.
 
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
 
@ AV_PIX_FMT_YUV420P16LE
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
 
int av_get_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel used by the pixel format described by pixdesc.
 
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
 
AVFormatInternal * internal
An opaque field for libavformat internal usage.
 
A link between two filters.
 
@ AV_PIX_FMT_YUV444P16LE
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
 
int av_expr_parse(AVExpr **expr, const char *s, const char *const *const_names, const char *const *func1_names, double(*const *funcs1)(void *, double), const char *const *func2_names, double(*const *funcs2)(void *, double, double), int log_offset, void *log_ctx)
Parse an expression.
 
static enum AVPixelFormat yuv_pix_fmts[]
 
@ AV_PIX_FMT_YUV420P12LE
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
 
static const char *const var_names[]
 
static const struct twinvq_data tab
 
#define PACKED_THREAD_DATA
 
static double val(void *priv, double ch)
 
#define LOAD_PACKED_COMMON
 
void av_expr_free(AVExpr *e)
Free a parsed expression previously created with av_expr_parse().
 
static const char *const funcs1_names[]
 
A filter pad used for either input or output.
 
@ AV_PIX_FMT_YUV420P10LE
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
 
uint16_t lut[4][256 *256]
lookup table for each component
 
@ AV_PIX_FMT_YUV444P12LE
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
 
@ AV_PIX_FMT_YUV444P14LE
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
 
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
 
static double(*const funcs1[])(void *, double)
 
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
 
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
 
static enum AVPixelFormat pix_fmts[]
 
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
 
double av_expr_eval(AVExpr *e, const double *const_values, void *opaque)
Evaluate a previously parsed expression.
 
static enum AVPixelFormat all_pix_fmts[]
 
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
 
#define PLANAR_THREAD_DATA
 
@ AV_PIX_FMT_YUV444P10LE
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
 
@ AV_PIX_FMT_YUVA422P10LE
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
 
@ AV_PIX_FMT_YUV422P16LE
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
 
Describe the class of an AVClass context structure.
 
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
 
@ AV_PIX_FMT_RGB48LE
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
 
@ AV_PIX_FMT_RGBA64LE
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
 
@ AV_PIX_FMT_YUVA444P9LE
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
 
@ AV_PIX_FMT_YUVA420P16LE
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
 
@ AV_PIX_FMT_YUV440P10LE
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
 
@ AV_PIX_FMT_YUVA420P9LE
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian
 
static int lut_packed_8bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 
@ AV_PIX_FMT_YUV420P14LE
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
 
@ AV_PIX_FMT_YUV440P12LE
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
 
static int lut_planar_8bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 
double var_values[VAR_VARS_NB]
 
@ AV_PIX_FMT_YUV422P10LE
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
 
static const uint32_t color[16+AV_CLASS_CATEGORY_NB]
 
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
 
#define LOAD_PLANAR_COMMON
 
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
 
static int lut_packed_16bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 
static enum AVPixelFormat rgb_pix_fmts[]
 
@ AV_PIX_FMT_YUVA420P10LE
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
 
#define AVFILTER_DEFINE_CLASS(fname)
 
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
 
#define i(width, name, range_min, range_max)
 
int w
agreed upon image width
 
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
 
static const AVFilterPad outputs[]
 
#define DEFINE_LUT_FILTER(name_, description_)
 
const char * name
Pad name.
 
static const AVFilterPad inputs[]
 
#define FF_ARRAY_ELEMS(a)
 
int h
agreed upon image height
 
@ AV_PIX_FMT_YUV444P9LE
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
 
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
 
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
 
static int query_formats(AVFilterContext *ctx)
 
char * av_strdup(const char *s)
Duplicate a string.
 
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
 
@ AV_PIX_FMT_YUVA444P10LE
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
 
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
 
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
 
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
 
@ AV_PIX_FMT_YUV422P9LE
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
 
@ AV_PIX_FMT_YUVA422P16LE
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
 
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
 
static int config_props(AVFilterLink *inlink)
 
@ AV_PIX_FMT_YUVA444P16LE
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
 
static int lut_planar_16bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 
@ AV_PIX_FMT_YUV422P12LE
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
 
static av_cold void uninit(AVFilterContext *ctx)
 
static double clip(void *opaque, double val)
Clip value val in the minval - maxval range.
 
static double compute_gammaval(void *opaque, double gamma)
Compute gamma correction for value val, assuming the minval-maxval range, val is clipped to a value c...
 
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
 
@ AV_PIX_FMT_YUVA422P9LE
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian