Go to the documentation of this file.
43 #define FREQUENCY_DOMAIN 1
123 mysofa_lookup_free(sofa->
lookup);
126 mysofa_free(sofa->
hrtf);
136 struct MYSOFA_HRTF *mysofa;
140 mysofa = mysofa_load(filename, &
ret);
141 s->sofa.hrtf = mysofa;
142 if (
ret || !mysofa) {
147 ret = mysofa_check(mysofa);
148 if (
ret != MYSOFA_OK) {
154 mysofa_loudness(
s->sofa.hrtf);
157 mysofa_minphase(
s->sofa.hrtf, 0.01f);
159 mysofa_tocartesian(
s->sofa.hrtf);
161 s->sofa.lookup = mysofa_lookup_init(
s->sofa.hrtf);
162 if (
s->sofa.lookup ==
NULL)
166 s->sofa.neighborhood = mysofa_neighborhood_init_withstepdefine(
s->sofa.hrtf,
171 s->sofa.fir =
av_calloc(
s->sofa.hrtf->N *
s->sofa.hrtf->R,
sizeof(*
s->sofa.fir));
175 if (mysofa->DataSamplingRate.elements != 1)
178 *samplingrate = mysofa->DataSamplingRate.values[0];
179 license = mysofa_getAttribute(mysofa->attributes, (
char *)
"License");
188 int len,
i, channel_id = 0;
196 for (
i = 32;
i > 0;
i >>= 1) {
203 if (channel_id >= 64 || layout0 != 1LL << channel_id) {
207 *rchannel = channel_id;
211 if (channel_id < 0 || channel_id >= 64) {
215 *rchannel = channel_id;
225 char *
arg, *tokenizer, *p, *args =
av_strdup(
s->speakers_pos);
240 s->vspkrpos[out_ch_id].set = 1;
241 s->vspkrpos[out_ch_id].azim = azim;
242 s->vspkrpos[out_ch_id].elev = elev;
244 s->vspkrpos[out_ch_id].set = 1;
245 s->vspkrpos[out_ch_id].azim = azim;
246 s->vspkrpos[out_ch_id].elev = 0;
254 float *speaker_azim,
float *speaker_elev)
257 uint64_t channels_layout =
ctx->inputs[0]->channel_layout;
258 float azim[64] = { 0 };
259 float elev[64] = { 0 };
260 int m, ch,
n_conv =
ctx->inputs[0]->channels;
262 if (n_conv < 0 || n_conv > 64)
271 for (m = 0, ch = 0; ch <
n_conv && m < 64; m++) {
272 uint64_t
mask = channels_layout & (1ULL << m);
288 elev[ch] = 90;
break;
290 elev[ch] = 45;
break;
292 elev[ch] = 45;
break;
294 elev[ch] = 45;
break;
296 elev[ch] = 45;
break;
298 elev[ch] = 45;
break;
300 elev[ch] = 45;
break;
312 if (
s->vspkrpos[m].set) {
313 azim[ch] =
s->vspkrpos[m].azim;
314 elev[ch] =
s->vspkrpos[m].elev;
346 int *write = &
td->write[jobnr];
347 const int *
const delay =
td->delay[jobnr];
348 const float *
const ir =
td->ir[jobnr];
349 int *n_clippings = &
td->n_clippings[jobnr];
350 float *ringbuffer =
td->ringbuffer[jobnr];
351 float *temp_src =
td->temp_src[jobnr];
352 const int ir_samples =
s->sofa.ir_samples;
353 const int n_samples =
s->sofa.n_samples;
356 const float *
src = (
const float *)
in->extended_data[0];
357 float *dst = (
float *)
out->extended_data[jobnr *
planar];
358 const int in_channels =
s->n_conv;
360 const int buffer_length =
s->buffer_length;
362 const uint32_t modulo = (uint32_t)buffer_length - 1;
371 for (l = 0; l < in_channels; l++) {
373 buffer[l] = ringbuffer + l * buffer_length;
376 for (
i = 0;
i <
in->nb_samples;
i++) {
377 const float *temp_ir = ir;
381 for (l = 0; l < in_channels; l++) {
382 const float *srcp = (
const float *)
in->extended_data[l];
388 for (l = 0; l < in_channels; l++) {
395 for (l = 0; l < in_channels; l++) {
396 const float *
const bptr =
buffer[l];
398 if (l ==
s->lfe_channel) {
401 dst[0] += *(
buffer[
s->lfe_channel] + wr) *
s->gain_lfe;
402 temp_ir += n_samples;
409 read = (wr - delay[l] - (ir_samples - 1) + buffer_length) & modulo;
411 if (read + ir_samples < buffer_length) {
412 memmove(temp_src, bptr + read, ir_samples *
sizeof(*temp_src));
414 int len =
FFMIN(n_samples - (read % ir_samples), buffer_length - read);
416 memmove(temp_src, bptr + read,
len *
sizeof(*temp_src));
417 memmove(temp_src +
len, bptr, (n_samples -
len) *
sizeof(*temp_src));
421 dst[0] +=
s->fdsp->scalarproduct_float(temp_ir, temp_src,
FFALIGN(ir_samples, 32));
422 temp_ir += n_samples;
426 if (
fabsf(dst[0]) > 1)
432 wr = (wr + 1) & modulo;
446 int *write = &
td->write[jobnr];
448 int *n_clippings = &
td->n_clippings[jobnr];
449 float *ringbuffer =
td->ringbuffer[jobnr];
450 const int ir_samples =
s->sofa.ir_samples;
453 float *dst = (
float *)
out->extended_data[jobnr *
planar];
454 const int in_channels =
s->n_conv;
456 const int buffer_length =
s->buffer_length;
458 const uint32_t modulo = (uint32_t)buffer_length - 1;
463 const int n_conv =
s->n_conv;
464 const int n_fft =
s->n_fft;
465 const float fft_scale = 1.0f /
s->n_fft;
476 n_read =
FFMIN(ir_samples,
in->nb_samples);
477 for (j = 0; j < n_read; j++) {
479 dst[
mult * j] = ringbuffer[wr];
480 ringbuffer[wr] = 0.0f;
482 wr = (wr + 1) & modulo;
486 for (j = n_read; j <
in->nb_samples; j++) {
491 memset(fft_acc, 0,
sizeof(
FFTComplex) * n_fft);
493 for (
i = 0;
i < n_conv;
i++) {
494 const float *
src = (
const float *)
in->extended_data[
i *
planar];
496 if (
i ==
s->lfe_channel) {
498 for (j = 0; j <
in->nb_samples; j++) {
500 dst[2 * j] +=
src[
i + j * in_channels] *
s->gain_lfe;
503 for (j = 0; j <
in->nb_samples; j++) {
505 dst[j] +=
src[j] *
s->gain_lfe;
513 hrtf_offset = hrtf +
offset;
516 memset(fft_in, 0,
sizeof(
FFTComplex) * n_fft);
519 for (j = 0; j <
in->nb_samples; j++) {
522 fft_in[j].
re =
src[j * in_channels +
i];
525 for (j = 0; j <
in->nb_samples; j++) {
528 fft_in[j].
re =
src[j];
535 for (j = 0; j < n_fft; j++) {
537 const float re = fft_in[j].
re;
538 const float im = fft_in[j].
im;
542 fft_acc[j].
re +=
re * hcomplex->
re -
im * hcomplex->
im;
544 fft_acc[j].
im +=
re * hcomplex->
im +
im * hcomplex->
re;
552 for (j = 0; j <
in->nb_samples; j++) {
554 dst[
mult * j] += fft_acc[j].
re * fft_scale;
557 for (j = 0; j < ir_samples - 1; j++) {
559 int write_pos = (wr + j) & modulo;
561 *(ringbuffer + write_pos) += fft_acc[
in->nb_samples + j].
re * fft_scale;
565 for (
i = 0;
i <
out->nb_samples;
i++) {
583 int n_clippings[2] = { 0 };
595 td.delay =
s->delay;
td.ir =
s->data_ir;
td.n_clippings = n_clippings;
596 td.ringbuffer =
s->ringbuffer;
td.temp_src =
s->temp_src;
597 td.temp_fft =
s->temp_fft;
598 td.temp_afft =
s->temp_afft;
608 if (n_clippings[0] + n_clippings[1] > 0) {
610 n_clippings[0] + n_clippings[1],
out->nb_samples * 2);
685 float *
left,
float *right,
686 float *delay_left,
float *delay_right)
689 float c[3], delays[2];
695 c[0] = x,
c[1] = y,
c[2] = z;
696 nearest = mysofa_lookup(
s->sofa.lookup,
c);
700 if (
s->interpolate) {
701 neighbors = mysofa_neighborhood(
s->sofa.neighborhood, nearest);
702 res = mysofa_interpolate(
s->sofa.hrtf,
c,
704 s->sofa.fir, delays);
706 if (
s->sofa.hrtf->DataDelay.elements >
s->sofa.hrtf->R) {
707 delays[0] =
s->sofa.hrtf->DataDelay.values[nearest *
s->sofa.hrtf->R];
708 delays[1] =
s->sofa.hrtf->DataDelay.values[nearest *
s->sofa.hrtf->R + 1];
710 delays[0] =
s->sofa.hrtf->DataDelay.values[0];
711 delays[1] =
s->sofa.hrtf->DataDelay.values[1];
713 res =
s->sofa.hrtf->DataIR.values + nearest *
s->sofa.hrtf->N *
s->sofa.hrtf->R;
716 *delay_left = delays[0];
717 *delay_right = delays[1];
720 fr = res +
s->sofa.hrtf->N;
722 memcpy(
left, fl,
sizeof(
float) *
s->sofa.hrtf->N);
723 memcpy(right, fr,
sizeof(
float) *
s->sofa.hrtf->N);
737 int nb_input_channels =
ctx->inputs[0]->channels;
738 float gain_lin =
expf((
s->gain - 3 * nb_input_channels) / 20 *
M_LN10);
743 float *data_ir_l =
NULL;
744 float *data_ir_r =
NULL;
746 int i, j, azim_orig = azim, elev_orig = elev;
752 s->sofa.ir_samples =
s->sofa.hrtf->N;
753 s->sofa.n_samples = 1 << (32 -
ff_clz(
s->sofa.ir_samples));
755 n_samples =
s->sofa.n_samples;
756 ir_samples =
s->sofa.ir_samples;
759 s->data_ir[0] =
av_calloc(n_samples,
sizeof(
float) *
s->n_conv);
760 s->data_ir[1] =
av_calloc(n_samples,
sizeof(
float) *
s->n_conv);
762 if (!
s->data_ir[0] || !
s->data_ir[1]) {
771 if (!
s->delay[0] || !
s->delay[1]) {
779 if (!data_ir_r || !data_ir_l) {
785 s->temp_src[0] =
av_calloc(n_samples,
sizeof(
float));
786 s->temp_src[1] =
av_calloc(n_samples,
sizeof(
float));
787 if (!
s->temp_src[0] || !
s->temp_src[1]) {
793 s->speaker_azim =
av_calloc(
s->n_conv,
sizeof(*
s->speaker_azim));
794 s->speaker_elev =
av_calloc(
s->n_conv,
sizeof(*
s->speaker_elev));
795 if (!
s->speaker_azim || !
s->speaker_elev) {
802 av_log(
ctx,
AV_LOG_ERROR,
"Couldn't get speaker positions. Input channel configuration not supported.\n");
806 for (
i = 0;
i <
s->n_conv;
i++) {
807 float coordinates[3];
810 azim = (
int)(
s->speaker_azim[
i] + azim_orig) % 360;
811 elev = (
int)(
s->speaker_elev[
i] + elev_orig) % 90;
813 coordinates[0] = azim;
814 coordinates[1] = elev;
817 mysofa_s2c(coordinates);
821 data_ir_l + n_samples *
i,
822 data_ir_r + n_samples *
i,
830 s->sofa.max_delay =
FFMAX3(
s->sofa.max_delay,
s->delay[0][
i],
s->delay[1][
i]);
835 n_current = n_samples +
s->sofa.max_delay;
837 n_max =
FFMAX(n_max, n_current);
841 s->buffer_length = 1 << (32 -
ff_clz(n_max));
854 if (!
s->fft[0] || !
s->fft[1] || !
s->ifft[0] || !
s->ifft[1]) {
862 s->ringbuffer[0] =
av_calloc(
s->buffer_length,
sizeof(
float) * nb_input_channels);
863 s->ringbuffer[1] =
av_calloc(
s->buffer_length,
sizeof(
float) * nb_input_channels);
868 if (!data_hrtf_r || !data_hrtf_l) {
873 s->ringbuffer[0] =
av_calloc(
s->buffer_length,
sizeof(
float));
874 s->ringbuffer[1] =
av_calloc(
s->buffer_length,
sizeof(
float));
879 if (!
s->temp_fft[0] || !
s->temp_fft[1] ||
880 !
s->temp_afft[0] || !
s->temp_afft[1]) {
886 if (!
s->ringbuffer[0] || !
s->ringbuffer[1]) {
894 if (!fft_in_l || !fft_in_r) {
900 for (
i = 0;
i <
s->n_conv;
i++) {
909 for (j = 0; j < ir_samples; j++) {
912 s->data_ir[0][
offset + j] = lir[ir_samples - 1 - j] * gain_lin;
913 s->data_ir[1][
offset + j] = rir[ir_samples - 1 - j] * gain_lin;
916 memset(fft_in_l, 0,
n_fft *
sizeof(*fft_in_l));
917 memset(fft_in_r, 0,
n_fft *
sizeof(*fft_in_r));
920 for (j = 0; j < ir_samples; j++) {
925 fft_in_l[
s->delay[0][
i] + j].
re = lir[j] * gain_lin;
926 fft_in_r[
s->delay[1][
i] + j].
re = rir[j] * gain_lin;
932 memcpy(data_hrtf_l +
offset, fft_in_l,
n_fft *
sizeof(*fft_in_l));
935 memcpy(data_hrtf_r +
offset, fft_in_r,
n_fft *
sizeof(*fft_in_r));
942 if (!
s->data_hrtf[0] || !
s->data_hrtf[1]) {
947 memcpy(
s->data_hrtf[0], data_hrtf_l,
949 memcpy(
s->data_hrtf[1], data_hrtf_r,
1004 s->nb_samples =
s->framesize;
1015 av_log(
ctx,
AV_LOG_DEBUG,
"Samplerate: %d Channels to convolute: %d, Length of ringbuffer: %d x %d\n",
1016 inlink->sample_rate,
s->n_conv,
inlink->channels,
s->buffer_length);
1053 #define OFFSET(x) offsetof(SOFAlizerContext, x)
1054 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
1096 .
name =
"sofalizer",
1099 .priv_class = &sofalizer_class,
av_cold void av_fft_end(FFTContext *s)
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
@ AV_SAMPLE_FMT_FLTP
float, planar
A list of supported channel layouts.
#define AV_LOG_WARNING
Something somehow does not look correct.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
VirtualSpeaker vspkrpos[64]
#define AV_CH_TOP_FRONT_CENTER
static int parse_channel_name(AVFilterContext *ctx, char **arg, int *rchannel)
#define AV_CH_LOW_FREQUENCY_2
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static enum AVSampleFormat sample_fmts[]
enum MovChannelLayoutTag * layouts
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
#define AV_CH_TOP_FRONT_RIGHT
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
void av_fft_permute(FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling ff_fft_calc().
#define AV_CH_TOP_FRONT_LEFT
uint64_t av_get_channel_layout(const char *name)
Return a channel layout id that matches name, or 0 if no match is found.
const char * name
Filter name.
static void parse_speaker_pos(AVFilterContext *ctx, int64_t in_channel_layout)
static const AVFilterPad outputs[]
AVFormatInternal * internal
An opaque field for libavformat internal usage.
A link between two filters.
#define FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink)
Forward the status on an output link to an input link.
#define AV_CH_SURROUND_DIRECT_RIGHT
#define AV_CH_TOP_BACK_LEFT
int ff_inlink_consume_frame(AVFilterLink *link, AVFrame **rframe)
Take a frame from the link's FIFO and update the link's stats.
#define AV_CH_TOP_BACK_CENTER
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
static __device__ float fabsf(float a)
#define AV_CH_LAYOUT_STEREO
A filter pad used for either input or output.
static int16_t mult(Float11 *f1, Float11 *f2)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define AV_CH_LOW_FREQUENCY
static const uint16_t mask[17]
static int config_input(AVFilterLink *inlink)
char * av_strtok(char *s, const char *delim, char **saveptr)
Split the string into several tokens which can be accessed by successive calls to av_strtok().
static int get_speaker_pos(AVFilterContext *ctx, float *speaker_azim, float *speaker_elev)
static int load_data(AVFilterContext *ctx, int azim, int elev, float radius, int sample_rate)
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static av_cold int init(AVFilterContext *ctx)
static int sofalizer_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
struct MYSOFA_LOOKUP * lookup
#define AV_CH_STEREO_RIGHT
See AV_CH_STEREO_LEFT.
static int activate(AVFilterContext *ctx)
int av_sscanf(const char *string, const char *format,...)
See libc sscanf manual for more information.
Describe the class of an AVClass context structure.
int ff_inlink_consume_samples(AVFilterLink *link, unsigned min, unsigned max, AVFrame **rframe)
Take samples from the link's FIFO and update the link's stats.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
#define AV_CH_FRONT_CENTER
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
#define AV_CH_FRONT_LEFT_OF_CENTER
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static const AVFilterPad inputs[]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static int query_formats(AVFilterContext *ctx)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
FF_FILTER_FORWARD_WANTED(outlink, inlink)
#define AV_CH_TOP_BACK_RIGHT
#define AV_CH_FRONT_RIGHT_OF_CENTER
static int preload_sofa(AVFilterContext *ctx, char *filename, int *samplingrate)
static void interpolate(float *out, float v1, float v2, int size)
#define AV_LOG_INFO
Standard information.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
static int getfilter_float(AVFilterContext *ctx, float x, float y, float z, float *left, float *right, float *delay_left, float *delay_right)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
#define av_malloc_array(a, b)
static const AVOption sofalizer_options[]
AVSampleFormat
Audio sample formats.
Used for passing data between threads.
#define AV_CH_BACK_CENTER
const char * name
Pad name.
static av_cold void uninit(AVFilterContext *ctx)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
FFTContext * av_fft_init(int nbits, int inverse)
Set up a complex FFT.
static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
the frame and frame reference mechanism is intended to as much as expensive copies of that data while still allowing the filters to produce correct results The data is stored in buffers represented by AVFrame structures Several references can point to the same frame buffer
struct MYSOFA_HRTF * hrtf
#define AV_CH_SURROUND_DIRECT_LEFT
struct MYSOFA_NEIGHBORHOOD * neighborhood
#define AV_CH_FRONT_RIGHT
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
char * av_strdup(const char *s)
Duplicate a string.
FF_FILTER_FORWARD_STATUS(inlink, outlink)
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
#define flags(name, subs,...)
#define AV_CH_STEREO_LEFT
Stereo downmix.
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1<< 16)) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out->ch+ch,(const uint8_t **) in->ch+ch, off *(out-> planar
void av_fft_calc(FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in av_fft_init().
FFTComplex * data_hrtf[2]
FFTComplex * temp_afft[2]
AVFILTER_DEFINE_CLASS(sofalizer)
static int close_sofa(struct MySofa *sofa)