Go to the documentation of this file.
   27 #define FF_BUFQUEUE_SIZE 129 
   34 #define SIZE FF_BUFQUEUE_SIZE 
   70                      uint8_t *dst, ptrdiff_t dst_linesize, 
int w, 
int h, 
float f);
 
   73 #define OFFSET(x) offsetof(DeflickerContext, x) 
   74 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM 
  126                       uint8_t *dst, ptrdiff_t dst_linesize,
 
  127                       int w, 
int h, 
float f)
 
  131     for (y = 0; y < 
h; y++) {
 
  132         for (x = 0; x < 
w; x++) {
 
  144                        const uint8_t *ssrc, ptrdiff_t src_linesize,
 
  145                        uint8_t *ddst, ptrdiff_t dst_linesize,
 
  146                        int w, 
int h, 
float f)
 
  149     const uint16_t *
src = (
const uint16_t *)ssrc;
 
  150     uint16_t *dst = (uint16_t *)ddst;
 
  151     const int max = (1 << 
s->depth) - 1;
 
  154     for (y = 0; y < 
h; y++) {
 
  155         for (x = 0; x < 
w; x++) {
 
  159         dst += dst_linesize / 2;
 
  160         src += src_linesize / 2;
 
  173     memset(
s->histogram, 0, (1 << 
s->depth) * 
sizeof(*
s->histogram));
 
  175     for (y = 0; y < 
s->planeheight[0]; y++) {
 
  176         for (x = 0; x < 
s->planewidth[0]; x++) {
 
  177             s->histogram[
src[x]]++;
 
  179         src += 
in->linesize[0];
 
  182     for (y = 0; y < 1 << 
s->depth; y++) {
 
  183         sum += 
s->histogram[y] * y;
 
  186     return 1.0f * sum / (
s->planeheight[0] * 
s->planewidth[0]);
 
  192     const uint16_t *
src = (
const uint16_t *)
in->data[0];
 
  196     memset(
s->histogram, 0, (1 << 
s->depth) * 
sizeof(*
s->histogram));
 
  198     for (y = 0; y < 
s->planeheight[0]; y++) {
 
  199         for (x = 0; x < 
s->planewidth[0]; x++) {
 
  200             s->histogram[
src[x]]++;
 
  202         src += 
in->linesize[0] / 2;
 
  205     for (y = 0; y < 1 << 
s->depth; y++) {
 
  206         sum += 
s->histogram[y] * y;
 
  209     return 1.0f * sum / (
s->planeheight[0] * 
s->planewidth[0]);
 
  219     for (y = 0; y < 
s->size; y++) {
 
  220         *
f += 
s->luminance[y];
 
  224     *
f /= 
s->luminance[0];
 
  234     for (y = 0; y < 
s->size; y++) {
 
  235         *
f *= 
s->luminance[y];
 
  238     *
f = pow(*
f, 1.0
f / 
s->size);
 
  239     *
f /= 
s->luminance[0];
 
  249     for (y = 0; y < 
s->size; y++) {
 
  250         *
f += 1.0f / 
s->luminance[y];
 
  254     *
f /= 
s->luminance[0];
 
  264     for (y = 0; y < 
s->size; y++) {
 
  265         *
f += 
s->luminance[y] * 
s->luminance[y];
 
  270     *
f /= 
s->luminance[0];
 
  280     for (y = 0; y < 
s->size; y++) {
 
  281         *
f += 
s->luminance[y] * 
s->luminance[y] * 
s->luminance[y];
 
  286     *
f /= 
s->luminance[0];
 
  296     for (y = 0; y < 
s->size; y++) {
 
  297         *
f += 
powf(
s->luminance[y], 
s->size);
 
  302     *
f /= 
s->luminance[0];
 
  307     const float *aa = 
a, *bb = 
b;
 
  308     return round(aa - bb);
 
  315     memcpy(
s->sorted, 
s->luminance, 
sizeof(
s->sorted));
 
  318     *
f = 
s->sorted[
s->size >> 1] / 
s->luminance[0];
 
  327     s->nb_planes = 
desc->nb_components;
 
  330     s->planeheight[0] = 
s->planeheight[3] = 
inlink->h;
 
  332     s->planewidth[0]  = 
s->planewidth[3]  = 
inlink->w;
 
  334     s->depth = 
desc->comp[0].depth;
 
  343     s->histogram = 
av_calloc(1 << 
s->depth, 
sizeof(*
s->histogram));
 
  370     if (
s->q.available < 
s->size && !
s->eof) {
 
  371         s->luminance[
s->available] = 
s->calc_avgy(
ctx, buf);
 
  385     s->get_factor(
ctx, &
f);
 
  387         s->deflicker(
ctx, 
in->data[0], 
in->linesize[0], 
out->data[0], 
out->linesize[0],
 
  388                      outlink->
w, outlink->
h, 
f);
 
  389     for (y = 1 - 
s->bypass; y < s->nb_planes; y++) {
 
  391                             in->data[y], 
in->linesize[y],
 
  392                             s->planewidth[y] * (1 + (
s->depth > 8)), 
s->planeheight[y]);
 
  396     metadata = &
out->metadata;
 
  412     memmove(&
s->luminance[0], &
s->luminance[1], 
sizeof(*
s->luminance) * (
s->size - 1));
 
  413     s->luminance[
s->available - 1] = 
s->calc_avgy(
ctx, buf);
 
  473     .priv_class    = &deflicker_class,
 
  
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
 
#define AV_PIX_FMT_YUVA422P16
 
AVPixelFormat
Pixel format.
 
static void get_gm_factor(AVFilterContext *ctx, float *f)
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
static void get_am_factor(AVFilterContext *ctx, float *f)
 
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
 
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
 
#define AVERROR_EOF
End of file.
 
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
 
static int comparef(const void *a, const void *b)
 
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
 
#define AV_PIX_FMT_YUVA422P9
 
This structure describes decoded (raw) audio or video data.
 
#define AV_PIX_FMT_YUVA420P16
 
#define AV_PIX_FMT_YUVA420P10
 
#define AV_PIX_FMT_YUV420P10
 
int ff_request_frame(AVFilterLink *link)
Request an input frame from the filter at the other end of the link.
 
static const AVOption deflicker_options[]
 
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
 
const char * name
Filter name.
 
A link between two filters.
 
#define AV_PIX_FMT_YUVA422P10
 
static AVFrame * ff_bufqueue_get(struct FFBufQueue *queue)
Get the first buffer from the queue and remove it.
 
void av_image_copy_plane(uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize, int bytewidth, int height)
Copy image plane from src to dst.
 
#define AV_PIX_FMT_YUVA420P9
 
static void get_pm_factor(AVFilterContext *ctx, float *f)
 
float(* calc_avgy)(AVFilterContext *ctx, AVFrame *in)
 
#define AV_PIX_FMT_YUVA444P16
 
#define AV_PIX_FMT_YUV422P9
 
void(* get_factor)(AVFilterContext *ctx, float *f)
 
#define AV_PIX_FMT_GRAY16
 
A filter pad used for either input or output.
 
#define AV_PIX_FMT_YUV444P10
 
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
 
static int deflicker16(AVFilterContext *ctx, const uint8_t *ssrc, ptrdiff_t src_linesize, uint8_t *ddst, ptrdiff_t dst_linesize, int w, int h, float f)
 
#define AV_PIX_FMT_YUV422P16
 
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
 
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
 
#define AV_PIX_FMT_YUV444P16
 
#define AV_CEIL_RSHIFT(a, b)
 
static float calc_avgy8(AVFilterContext *ctx, AVFrame *in)
 
#define AV_PIX_FMT_YUVA444P12
 
#define AV_PIX_FMT_YUV420P9
 
#define AV_PIX_FMT_YUV420P16
 
#define AV_PIX_FMT_GRAY14
 
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
 
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
 
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
 
#define AV_PIX_FMT_GRAY10
 
Describe the class of an AVClass context structure.
 
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
 
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
 
static void ff_bufqueue_discard_all(struct FFBufQueue *queue)
Unref and remove all buffers from the queue.
 
#define AV_PIX_FMT_YUV440P10
 
#define AV_PIX_FMT_YUV422P10
 
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
 
static const AVFilterPad outputs[]
 
static int request_frame(AVFilterLink *outlink)
 
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
 
#define AV_PIX_FMT_YUV422P12
 
static const AVFilterPad inputs[]
 
#define AV_PIX_FMT_YUV444P12
 
static av_cold void uninit(AVFilterContext *ctx)
 
AVFilterContext * src
source filter
 
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
 
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
 
static int deflicker8(AVFilterContext *ctx, const uint8_t *src, ptrdiff_t src_linesize, uint8_t *dst, ptrdiff_t dst_linesize, int w, int h, float f)
 
#define AV_PIX_FMT_YUVA444P10
 
static void ff_bufqueue_add(void *log, struct FFBufQueue *queue, AVFrame *buf)
Add a buffer to the queue.
 
static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
 
AVFILTER_DEFINE_CLASS(deflicker)
 
static void get_median_factor(AVFilterContext *ctx, float *f)
 
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
 
static AVFrame * ff_bufqueue_peek(struct FFBufQueue *queue, unsigned index)
Get a buffer from the queue without altering it.
 
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
 
static av_always_inline av_const double round(double x)
 
Structure holding the queue.
 
int w
agreed upon image width
 
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
 
static av_always_inline float cbrtf(float x)
 
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
 
const char * name
Pad name.
 
#define AV_PIX_FMT_YUV444P9
 
static int query_formats(AVFilterContext *ctx)
 
int(* deflicker)(AVFilterContext *ctx, const uint8_t *src, ptrdiff_t src_linesize, uint8_t *dst, ptrdiff_t dst_linesize, int w, int h, float f)
 
#define AV_PIX_FMT_YUVA444P9
 
#define AV_PIX_FMT_YUV420P12
 
#define AV_PIX_FMT_YUV422P14
 
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
 
int h
agreed upon image height
 
#define AV_PIX_FMT_YUVA422P12
 
static void get_qm_factor(AVFilterContext *ctx, float *f)
 
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
 
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
 
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
 
static void get_cm_factor(AVFilterContext *ctx, float *f)
 
int av_dict_set(AVDictionary **pm, const char *key, const char *value, int flags)
Set the given entry in *pm, overwriting an existing entry.
 
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
 
static int config_input(AVFilterLink *inlink)
 
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
 
#define AV_PIX_FMT_YUV440P12
 
#define AV_PIX_FMT_YUV444P14
 
#define AV_PIX_FMT_GRAY12
 
static float calc_avgy16(AVFilterContext *ctx, AVFrame *in)
 
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
 
static void get_hm_factor(AVFilterContext *ctx, float *f)
 
#define AV_PIX_FMT_YUV420P14