Go to the documentation of this file.
   88     if (
s->print_summary) {
 
   89         float avg_si = 
s->sum_si / 
s->nb_frames;
 
   90         float avg_ti = 
s->sum_ti / 
s->nb_frames;
 
   92                "SITI Summary:\nTotal frames: %"PRId64
"\n\n" 
   93                "Spatial Information:\nAverage: %f\nMax: %f\nMin: %f\n\n" 
   94                "Temporal Information:\nAverage: %f\nMax: %f\nMin: %f\n",
 
   95                s->nb_frames, avg_si, 
s->max_si, 
s->min_si, avg_ti, 
s->max_ti, 
s->min_ti
 
  123     s->pixel_depth = max_pixsteps[0];
 
  126     pixel_sz = 
s->pixel_depth == 1 ? 
sizeof(uint8_t) : 
sizeof(uint16_t);
 
  127     data_sz = 
s->width * pixel_sz * 
s->height;
 
  131     gradient_sz = (
s->width - 2) * 
sizeof(
float) * (
s->height - 2);
 
  134     motion_sz = 
s->width * 
sizeof(
float) * 
s->height;
 
  137     if (!
s->prev_frame || ! 
s->gradient_matrix || !
s->motion_matrix) {
 
  164     full_upper = 256 * 
factor - 1;
 
  166     return (full_upper * limit_y / limit_upper);
 
  179     int filter_width = 3;
 
  180     int filter_size = filter_width * filter_width;
 
  181     int stride = linesize / 
s->pixel_depth;
 
  183     int factor = 
s->pixel_depth == 1 ? 1 : 4;
 
  186     #define CONVOLVE(bps)                                           \ 
  188         uint##bps##_t *vsrc = (uint##bps##_t*)src;                  \ 
  189         for (int j = 1; j < s->height - 1; j++) {                   \ 
  190             for (int i = 1; i < s->width - 1; i++) {                \ 
  193                 for (int k = 0; k < filter_size; k++) {             \ 
  194                     ki = k % filter_width - 1;                      \ 
  195                     kj = floor(k / filter_width) - 1;               \ 
  196                     index = (j + kj) * stride + (i + ki);           \ 
  197                     data = s->full_range ? vsrc[index] : convert_full_range(factor, vsrc[index]); \ 
  198                     x_conv_sum += data * X_FILTER[k];               \ 
  199                     y_conv_sum += data * Y_FILTER[k];               \ 
  201                 gradient = sqrt(x_conv_sum * x_conv_sum + y_conv_sum * y_conv_sum); \ 
  202                 dst[(j - 1) * (s->width - 2) + (i - 1)] = gradient; \ 
  207     if (
s->pixel_depth == 2) {
 
  216                              float *motion_matrix, 
int linesize)
 
  218     int stride = linesize / 
s->pixel_depth;
 
  224     int factor = 
s->pixel_depth == 1 ? 1 : 4;
 
  227     #define CALCULATE(bps)                                           \ 
  229         uint##bps##_t *vsrc = (uint##bps##_t*)curr;                  \ 
  230         uint##bps##_t *vdst = (uint##bps##_t*)s->prev_frame;         \ 
  231         for (int j = 0; j < s->height; j++) {                        \ 
  232             for (int i = 0; i < s->width; i++) {                     \ 
  234                 curr_index = j * stride + i;                         \ 
  235                 prev_index = j * s->width + i;                       \ 
  236                 curr_data = s->full_range ? vsrc[curr_index] : convert_full_range(factor, vsrc[curr_index]); \ 
  237                 if (s->nb_frames > 1)                                \ 
  238                     motion = curr_data - vdst[prev_index];           \ 
  239                 vdst[prev_index] = curr_data;                        \ 
  240                 motion_matrix[j * s->width + i] = motion;            \ 
  245     if (
s->pixel_depth == 2) {
 
  258     for (
int j = 0; j < 
height; j++)
 
  264     for (
int j = 0; j < 
height; j++) {
 
  266             float mean_diff = img_metrics[j * 
width + 
i] - 
mean;
 
  267             sqr_diff += (mean_diff * mean_diff);
 
  270     sqr_diff = sqr_diff / 
size;
 
  271     return sqrt(sqr_diff);
 
  298     s->max_si  = 
fmaxf(si, 
s->max_si);
 
  299     s->max_ti  = 
fmaxf(ti, 
s->max_ti);
 
  302     s->min_si  = 
s->nb_frames == 1 ? si : 
fminf(si, 
s->min_si);
 
  303     s->min_ti  = 
s->nb_frames == 1 ? ti : 
fminf(ti, 
s->min_ti);
 
  312 #define OFFSET(x) offsetof(SiTiContext, x) 
  313 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM 
  340     .description   = 
NULL_IF_CONFIG_SMALL(
"Calculate spatial information (SI) and temporal information (TI)."),
 
  342     .priv_class    = &siti_class,
 
  
AVPixelFormat
Pixel format.
 
static const AVFilterPad avfilter_vf_siti_inputs[]
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
 
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
 
#define FILTER_PIXFMTS_ARRAY(array)
 
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
 
static void calculate_motion(SiTiContext *s, const uint8_t *curr, float *motion_matrix, int linesize)
 
static float std_deviation(float *img_metrics, int width, int height)
 
static const int X_FILTER[9]
 
This structure describes decoded (raw) audio or video data.
 
@ AVCOL_RANGE_JPEG
Full range content.
 
#define AV_PIX_FMT_YUV420P10
 
static uint16_t convert_full_range(int factor, uint16_t y)
 
const char * name
Filter name.
 
A link between two filters.
 
@ AVCOL_RANGE_NB
Not part of ABI.
 
static int config_input(AVFilterLink *inlink)
 
A filter pad used for either input or output.
 
static int is_full_range(AVFrame *frame)
 
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
 
static enum AVPixelFormat pix_fmts[]
 
float fminf(float, float)
 
static av_cold void uninit(AVFilterContext *ctx)
 
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
 
#define FILTER_INPUTS(array)
 
static const int Y_FILTER[9]
 
Describe the class of an AVClass context structure.
 
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
 
#define AV_PIX_FMT_YUV422P10
 
@ AVCOL_RANGE_UNSPECIFIED
 
static void set_meta(AVDictionary **metadata, const char *key, float d)
 
const AVFilter ff_vf_siti
 
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
 
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
 
float fmaxf(float, float)
 
static av_cold int init(AVFilterContext *ctx)
 
#define AV_LOG_INFO
Standard information.
 
#define i(width, name, range_min, range_max)
 
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
 
const char * name
Pad name.
 
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
 
AVFILTER_DEFINE_CLASS(siti)
 
#define AVFILTER_FLAG_METADATA_ONLY
The filter is a "metadata" filter - it does not modify the frame data in any way.
 
static float mean(const float *input, int size)
 
void av_image_fill_max_pixsteps(int max_pixsteps[4], int max_pixstep_comps[4], const AVPixFmtDescriptor *pixdesc)
Compute the max pixel step for each plane of an image with a format described by pixdesc.
 
static const int factor[16]
 
static int shift(int a, int b)
 
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
 
static const AVFilterPad avfilter_vf_siti_outputs[]
 
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
 
#define FILTER_OUTPUTS(array)
 
int av_dict_set(AVDictionary **pm, const char *key, const char *value, int flags)
Set the given entry in *pm, overwriting an existing entry.
 
#define flags(name, subs,...)
 
static const AVOption siti_options[]
 
static void convolve_sobel(SiTiContext *s, const uint8_t *src, float *dst, int linesize)