Go to the documentation of this file.
   77 #define DEFINE_DEDOTCRAWL(name, type, div)                       \ 
   78 static int dedotcrawl##name(AVFilterContext *ctx, void *arg,     \ 
   79                             int jobnr, int nb_jobs)              \ 
   81     DedotContext *s = ctx->priv;                                 \ 
   83     int src_linesize = s->frames[2]->linesize[0] / div;          \ 
   84     int dst_linesize = out->linesize[0] / div;                   \ 
   85     int p0_linesize = s->frames[0]->linesize[0] / div;           \ 
   86     int p1_linesize = s->frames[1]->linesize[0] / div;           \ 
   87     int p3_linesize = s->frames[3]->linesize[0] / div;           \ 
   88     int p4_linesize = s->frames[4]->linesize[0] / div;           \ 
   89     const int h = s->planeheight[0];                             \ 
   90     int slice_start = (h * jobnr) / nb_jobs;                     \ 
   91     int slice_end = (h * (jobnr+1)) / nb_jobs;                   \ 
   92     type *p0 = (type *)s->frames[0]->data[0];                    \ 
   93     type *p1 = (type *)s->frames[1]->data[0];                    \ 
   94     type *p3 = (type *)s->frames[3]->data[0];                    \ 
   95     type *p4 = (type *)s->frames[4]->data[0];                    \ 
   96     type *src = (type *)s->frames[2]->data[0];                   \ 
   97     type *dst = (type *)out->data[0];                            \ 
   98     const int luma2d = s->luma2d;                                \ 
   99     const int lumaT = s->lumaT;                                  \ 
  101     if (!slice_start) {                                          \ 
  104     p0 += p0_linesize * slice_start;                             \ 
  105     p1 += p1_linesize * slice_start;                             \ 
  106     p3 += p3_linesize * slice_start;                             \ 
  107     p4 += p4_linesize * slice_start;                             \ 
  108     src += src_linesize * slice_start;                           \ 
  109     dst += dst_linesize * slice_start;                           \ 
  110     if (slice_end == h) {                                        \ 
  113     for (int y = slice_start; y < slice_end; y++) {              \ 
  114         for (int x = 1; x < s->planewidth[0] - 1; x++) {         \ 
  115             int above = src[x - src_linesize];                   \ 
  116             int bellow = src[x + src_linesize];                  \ 
  118             int left = src[x - 1];                               \ 
  119             int right = src[x + 1];                              \ 
  121             if (FFABS(above + bellow - 2 * cur) <= luma2d &&     \ 
  122                 FFABS(left + right - 2 * cur) <= luma2d)         \ 
  125             if (FFABS(cur - p0[x]) <= lumaT &&                   \ 
  126                 FFABS(cur - p4[x]) <= lumaT &&                   \ 
  127                 FFABS(p1[x] - p3[x]) <= lumaT) {                 \ 
  128                 int diff1 = FFABS(cur - p1[x]);                  \ 
  129                 int diff2 = FFABS(cur - p3[x]);                  \ 
  132                     dst[x] = (src[x] + p1[x] + 1) >> 1;          \ 
  134                     dst[x] = (src[x] + p3[x] + 1) >> 1;          \ 
  138         dst += dst_linesize;                                     \ 
  139         src += src_linesize;                                     \ 
  156 #define DEFINE_DERAINBOW(name, type, div)                    \ 
  157 static int derainbow##name(AVFilterContext *ctx, void *arg,  \ 
  158                            int jobnr, int nb_jobs)           \ 
  160     DedotContext *s = ctx->priv;                             \ 
  161     ThreadData *td = arg;                                    \ 
  162     AVFrame *out = td->out;                                  \ 
  163     const int plane = td->plane;                             \ 
  164     const int h = s->planeheight[plane];                     \ 
  165     int slice_start = (h * jobnr) / nb_jobs;                 \ 
  166     int slice_end = (h * (jobnr+1)) / nb_jobs;               \ 
  167     int src_linesize = s->frames[2]->linesize[plane] / div;  \ 
  168     int dst_linesize = out->linesize[plane] / div;           \ 
  169     int p0_linesize = s->frames[0]->linesize[plane] / div;   \ 
  170     int p1_linesize = s->frames[1]->linesize[plane] / div;   \ 
  171     int p3_linesize = s->frames[3]->linesize[plane] / div;   \ 
  172     int p4_linesize = s->frames[4]->linesize[plane] / div;   \ 
  173     type *p0 = (type *)s->frames[0]->data[plane];            \ 
  174     type *p1 = (type *)s->frames[1]->data[plane];            \ 
  175     type *p3 = (type *)s->frames[3]->data[plane];            \ 
  176     type *p4 = (type *)s->frames[4]->data[plane];            \ 
  177     type *src = (type *)s->frames[2]->data[plane];           \ 
  178     type *dst = (type *)out->data[plane];                    \ 
  179     const int chromaT1 = s->chromaT1;                        \ 
  180     const int chromaT2 = s->chromaT2;                        \ 
  182     p0 += slice_start * p0_linesize;                         \ 
  183     p1 += slice_start * p1_linesize;                         \ 
  184     p3 += slice_start * p3_linesize;                         \ 
  185     p4 += slice_start * p4_linesize;                         \ 
  186     src += slice_start * src_linesize;                       \ 
  187     dst += slice_start * dst_linesize;                       \ 
  188     for (int y = slice_start; y < slice_end; y++) {          \ 
  189         for (int x = 0; x < s->planewidth[plane]; x++) {     \ 
  192             if (FFABS(cur - p0[x]) <= chromaT1 &&            \ 
  193                 FFABS(cur - p4[x]) <= chromaT1 &&            \ 
  194                 FFABS(p1[x] - p3[x]) <= chromaT1 &&          \ 
  195                 FFABS(cur - p1[x]) > chromaT2 &&             \ 
  196                 FFABS(cur - p3[x]) > chromaT2) {             \ 
  197                 int diff1 = FFABS(cur - p1[x]);              \ 
  198                 int diff2 = FFABS(cur - p3[x]);              \ 
  201                     dst[x] = (src[x] + p1[x] + 1) >> 1;      \ 
  203                     dst[x] = (src[x] + p3[x] + 1) >> 1;      \ 
  207         dst += dst_linesize;                                 \ 
  208         src += src_linesize;                                 \ 
  230     s->depth = 
s->desc->comp[0].depth;
 
  231     s->max = (1 << 
s->depth) - 1;
 
  232     s->luma2d = 
s->lt * 
s->max;
 
  233     s->lumaT = 
s->tl * 
s->max;
 
  234     s->chromaT1 = 
s->tc * 
s->max;
 
  235     s->chromaT2 = 
s->ct * 
s->max;
 
  238     s->planewidth[0] = 
s->planewidth[3] = 
inlink->w;
 
  241     s->planeheight[0] = 
s->planeheight[3] = 
inlink->h;
 
  244         s->dedotcrawl = dedotcrawl8;
 
  245         s->derainbow = derainbow8;
 
  247         s->dedotcrawl = dedotcrawl16;
 
  248         s->derainbow = derainbow16;
 
  271     if (
frame || 
s->eof_frames > 0) {
 
  275             for (
int i = 2; 
i < 5; 
i++) {
 
  280         } 
else if (
s->frames[3]) {
 
  291             if (
out && !
ctx->is_disabled) {
 
  317         s->frames[0] = 
s->frames[1];
 
  318         s->frames[1] = 
s->frames[2];
 
  319         s->frames[2] = 
s->frames[3];
 
  320         s->frames[3] = 
s->frames[4];
 
  330         if (
s->eof_frames <= 0) {
 
  341             s->eof_frames = !!
s->frames[0] + !!
s->frames[1];
 
  342             if (
s->eof_frames <= 0) {
 
  360     for (
int i = 0; 
i < 5; 
i++)
 
  364 #define OFFSET(x) offsetof(DedotContext, x) 
  365 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_FILTERING_PARAM 
  399     .priv_class    = &dedot_class,
 
  
#define AV_PIX_FMT_YUVA422P16
 
AVPixelFormat
Pixel format.
 
they must not be accessed directly The fifo field contains the frames that are queued in the input for processing by the filter The status_in and status_out fields contains the queued status(EOF or error) of the link
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
const AVFilter ff_vf_dedot
 
static const AVFilterPad outputs[]
 
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
 
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
 
#define AVERROR_EOF
End of file.
 
#define FILTER_PIXFMTS_ARRAY(array)
 
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
 
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
 
#define AV_PIX_FMT_YUVA422P9
 
This structure describes decoded (raw) audio or video data.
 
#define AV_PIX_FMT_YUVA420P16
 
#define AV_PIX_FMT_YUVA420P10
 
static int config_output(AVFilterLink *outlink)
 
#define AV_PIX_FMT_YUV420P10
 
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
 
const char * name
Filter name.
 
A link between two filters.
 
#define AV_PIX_FMT_YUVA422P10
 
#define FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink)
Forward the status on an output link to an input link.
 
int ff_inlink_consume_frame(AVFilterLink *link, AVFrame **rframe)
Take a frame from the link's FIFO and update the link's stats.
 
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
 
#define AV_PIX_FMT_YUVA420P9
 
AVFILTER_DEFINE_CLASS(dedot)
 
#define AV_PIX_FMT_YUVA444P16
 
#define AV_PIX_FMT_YUV422P9
 
A filter pad used for either input or output.
 
#define AV_PIX_FMT_YUV444P10
 
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
 
#define AV_PIX_FMT_YUV422P16
 
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
 
static void ff_outlink_set_status(AVFilterLink *link, int status, int64_t pts)
Set the status field of a link from the source filter.
 
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
 
#define AV_PIX_FMT_YUV444P16
 
#define AV_CEIL_RSHIFT(a, b)
 
const AVPixFmtDescriptor * desc
 
#define AV_PIX_FMT_YUVA444P12
 
#define AV_PIX_FMT_YUV420P9
 
#define AV_PIX_FMT_YUV420P16
 
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
 
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
 
#define FILTER_INPUTS(array)
 
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
 
int ff_inlink_make_frame_writable(AVFilterLink *link, AVFrame **rframe)
Make sure a frame is writable.
 
Describe the class of an AVClass context structure.
 
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
 
#define DEFINE_DEDOTCRAWL(name, type, div)
 
#define AV_PIX_FMT_YUV422P10
 
int ff_inlink_acknowledge_status(AVFilterLink *link, int *rstatus, int64_t *rpts)
Test and acknowledge the change of status on the link.
 
int(* derainbow)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
 
int(* dedotcrawl)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 
static av_cold void uninit(AVFilterContext *ctx)
 
#define AV_PIX_FMT_YUV422P12
 
#define AV_PIX_FMT_YUV444P12
 
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
 
#define AV_PIX_FMT_YUVA444P10
 
FF_FILTER_FORWARD_WANTED(outlink, inlink)
 
static enum AVPixelFormat pixel_fmts[]
 
#define i(width, name, range_min, range_max)
 
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
 
Used for passing data between threads.
 
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
 
const char * name
Pad name.
 
#define AV_PIX_FMT_YUV444P9
 
#define DEFINE_DERAINBOW(name, type, div)
 
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
 
#define AV_PIX_FMT_YUVA444P9
 
#define AV_PIX_FMT_YUV420P12
 
#define AV_PIX_FMT_YUV422P14
 
#define AV_PIX_FMT_YUVA422P12
 
static const AVOption dedot_options[]
 
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
 
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
 
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
 
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
 
#define FILTER_OUTPUTS(array)
 
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
 
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
 
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
 
static int activate(AVFilterContext *ctx)
 
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
 
#define AV_PIX_FMT_YUV440P12
 
#define AV_PIX_FMT_YUV444P14
 
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
 
static const AVFilterPad inputs[]
 
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
 
#define AV_PIX_FMT_YUV420P14
 
void ff_filter_set_ready(AVFilterContext *filter, unsigned priority)
Mark a filter ready and schedule it for activation.