Go to the documentation of this file.
   93 #define OFFSET(x) offsetof(MCompandContext, x) 
   94 #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM 
   97     { 
"args", 
"set parameters for each band", 
OFFSET(args), 
AV_OPT_TYPE_STRING, { .str = 
"0.005,0.1 6 -47/-40,-34/-34,-17/-33 100 | 0.003,0.05 6 -47/-40,-34/-34,-17/-33 400 | 0.000625,0.0125 6 -47/-40,-34/-34,-15/-33 1600 | 0.0001,0.025 6 -47/-40,-34/-34,-31/-31,-0/-30 6400 | 0,0.025 6 -38/-31,-28/-28,-0/-25 22000" }, 0, 0, 
A },
 
  113         for (
i = 0; 
i < 
s->nb_bands; 
i++) {
 
  125 static void count_items(
char *item_str, 
int *nb_items, 
char delimiter)
 
  130     for (p = item_str; *p; p++) {
 
  138     double delta = in - 
cb->volume[ch];
 
  141         cb->volume[ch] += 
delta * 
cb->attack_rate[ch];
 
  143         cb->volume[ch] += 
delta * 
cb->decay_rate[ch];
 
  149     double in_log, out_log;
 
  152     if (in_lin <= s->in_min_lin)
 
  153         return s->out_min_lin;
 
  155     in_log = 
log(in_lin);
 
  157     for (
i = 1; 
i < 
s->nb_segments; 
i++)
 
  158         if (in_log <= s->segments[
i].x)
 
  160     cs = &
s->segments[
i - 1];
 
  162     out_log = cs->
y + in_log * (cs->
a * in_log + cs->
b);
 
  170     int new_nb_items, num;
 
  171     char *saveptr = 
NULL;
 
  175 #define S(x) s->segments[2 * ((x) + 1)] 
  176     for (
i = 0, new_nb_items = 0; 
i < nb_points; 
i++) {
 
  177         char *tstr = 
av_strtok(p, 
",", &saveptr);
 
  179         if (!tstr || sscanf(tstr, 
"%lf/%lf", &
S(
i).x, &
S(
i).y) != 2) {
 
  181                     "Invalid and/or missing input/output value.\n");
 
  184         if (
i && 
S(
i - 1).x > 
S(
i).x) {
 
  186                     "Transfer function input values must be increasing.\n");
 
  196     if (num == 0 || 
S(num - 1).x)
 
  200 #define S(x) s->segments[2 * (x)] 
  202     S(0).x = 
S(1).x - 2 * 
s->curve_dB;
 
  207     for (
i = 2; 
i < num; 
i++) {
 
  208         double g1 = (
S(
i - 1).y - 
S(
i - 2).y) * (
S(
i - 0).x - 
S(
i - 1).x);
 
  209         double g2 = (
S(
i - 0).y - 
S(
i - 1).y) * (
S(
i - 1).x - 
S(
i - 2).x);
 
  215         for (j = --
i; j < num; j++)
 
  219     for (
i = 0; 
i < 
s->nb_segments; 
i += 2) {
 
  220         s->segments[
i].y += 
s->gain_dB;
 
  225 #define L(x) s->segments[i - (x)] 
  226     for (
i = 4; 
i < 
s->nb_segments; 
i += 2) {
 
  227         double x, y, cx, cy, in1, in2, out1, out2, theta, 
len, 
r;
 
  230         L(4).b = (
L(2).y - 
L(4).y) / (
L(2).x - 
L(4).x);
 
  233         L(2).b = (
L(0).y - 
L(2).y) / (
L(0).x - 
L(2).x);
 
  235         theta = atan2(
L(2).y - 
L(4).y, 
L(2).x - 
L(4).x);
 
  238         L(3).x = 
L(2).x - 
r * cos(theta);
 
  239         L(3).y = 
L(2).y - 
r * sin(theta);
 
  241         theta = atan2(
L(0).y - 
L(2).y, 
L(0).x - 
L(2).x);
 
  244         x = 
L(2).x + 
r * cos(theta);
 
  245         y = 
L(2).y + 
r * sin(theta);
 
  247         cx = (
L(3).x + 
L(2).x + x) / 3;
 
  248         cy = (
L(3).y + 
L(2).y + y) / 3;
 
  255         in2  = 
L(2).x - 
L(3).x;
 
  256         out2 = 
L(2).y - 
L(3).y;
 
  257         L(3).a = (out2 / in2 - out1 / in1) / (in2 - in1);
 
  258         L(3).b = out1 / in1 - 
L(3).a * in1;
 
  263     s->in_min_lin  = 
exp(
s->segments[1].x);
 
  264     s->out_min_lin = 
exp(
s->segments[1].y);
 
  272     y[1] = 2 * x[0] * x[1];
 
  273     y[2] = 2 * x[0] * x[2] + x[1] * x[1];
 
  274     y[3] = 2 * x[1] * x[2];
 
  281     double Q = sqrt(.5), 
alpha = sin(w0) / (2*Q);
 
  288     x[0] =  (1 - cos(w0))/2;           
 
  290     x[2] =  (1 - cos(w0))/2;
 
  291     x[3] =  (1 + cos(w0))/2;           
 
  292     x[4] = -(1 + cos(w0));
 
  293     x[5] =  (1 + cos(w0))/2;
 
  298     for (norm = x[6], 
i = 0; 
i < 9; ++
i)
 
  316     int ret, ch, 
i, k, new_nb_items, nb_bands;
 
  317     char *p = 
s->args, *saveptr = 
NULL;
 
  318     int max_delay_size = 0;
 
  321     s->nb_bands = 
FFMAX(1, nb_bands);
 
  327     for (
i = 0, new_nb_items = 0; 
i < nb_bands; 
i++) {
 
  328         int nb_points, nb_attacks, nb_items = 0;
 
  329         char *tstr2, *tstr = 
av_strtok(p, 
"|", &saveptr);
 
  330         char *p2, *p3, *saveptr2 = 
NULL, *saveptr3 = 
NULL;
 
  348         if (!nb_attacks || nb_attacks & 1) {
 
  356         if (!
s->bands[
i].attack_rate || !
s->bands[
i].decay_rate || !
s->bands[
i].volume)
 
  360             char *tstr3 = 
av_strtok(p3, 
",", &saveptr3);
 
  363             sscanf(tstr3, 
"%lf", &
s->bands[
i].attack_rate[k]);
 
  365             sscanf(tstr3, 
"%lf", &
s->bands[
i].decay_rate[k]);
 
  367             if (
s->bands[
i].attack_rate[k] > 1.0 / outlink->
sample_rate) {
 
  368                 s->bands[
i].attack_rate[k] = 1.0 - 
exp(-1.0 / (outlink->
sample_rate * 
s->bands[
i].attack_rate[k]));
 
  370                 s->bands[
i].attack_rate[k] = 1.0;
 
  373             if (
s->bands[
i].decay_rate[k] > 1.0 / outlink->
sample_rate) {
 
  374                 s->bands[
i].decay_rate[k] = 1.0 - 
exp(-1.0 / (outlink->
sample_rate * 
s->bands[
i].decay_rate[k]));
 
  376                 s->bands[
i].decay_rate[k] = 1.0;
 
  381             s->bands[
i].attack_rate[ch] = 
s->bands[
i].attack_rate[k - 1];
 
  382             s->bands[
i].decay_rate[ch]  = 
s->bands[
i].decay_rate[k - 1];
 
  390         sscanf(tstr2, 
"%lf", &
s->bands[
i].transfer_fn.curve_dB);
 
  392         radius = 
s->bands[
i].transfer_fn.curve_dB * 
M_LN10 / 20.0;
 
  401         s->bands[
i].transfer_fn.nb_segments = (nb_points + 4) * 2;
 
  402         s->bands[
i].transfer_fn.segments = 
av_calloc(
s->bands[
i].transfer_fn.nb_segments,
 
  404         if (!
s->bands[
i].transfer_fn.segments)
 
  419         new_nb_items += sscanf(tstr2, 
"%lf", &
s->bands[
i].topfreq) == 1;
 
  420         if (
s->bands[
i].topfreq < 0 || 
s->bands[
i].topfreq >= outlink->
sample_rate / 2) {
 
  425         if (
s->bands[
i].topfreq != 0) {
 
  433             sscanf(tstr2, 
"%lf", &
s->bands[
i].delay);
 
  438                 double initial_volume;
 
  440                 sscanf(tstr2, 
"%lf", &initial_volume);
 
  441                 initial_volume = pow(10.0, initial_volume / 20);
 
  444                     s->bands[
i].volume[k] = initial_volume;
 
  449                     sscanf(tstr2, 
"%lf", &
s->bands[
i].transfer_fn.gain_dB);
 
  454     s->nb_bands = new_nb_items;
 
  456     for (
i = 0; max_delay_size > 0 && 
i < 
s->nb_bands; 
i++) {
 
  458         if (!
s->bands[
i].delay_buf)
 
  461     s->delay_buf_size = max_delay_size;
 
  466 #define CONVOLVE _ _ _ _ 
  469                       double *ibuf, 
double *obuf_low,
 
  470                       double *obuf_high, 
size_t len)
 
  472     double out_low, out_high;
 
  476 #define _ out_low += p->coefs[j] * p->previous[ch][p->pos + j].in \ 
  477             - p->coefs[2*N+2 + j] * p->previous[ch][p->pos + j].out_low, j++; 
  480             out_low = p->
coefs[0] * *ibuf;
 
  482             *obuf_low++ = out_low;
 
  485 #define _ out_high += p->coefs[j+N+1] * p->previous[ch][p->pos + j].in \ 
  486             - p->coefs[2*N+2 + j] * p->previous[ch][p->pos + j].out_high, j++; 
  489             out_high = p->
coefs[
N+1] * *ibuf;
 
  491             *obuf_high++ = out_high;
 
  503     for (
i = 0; 
i < 
len; 
i++) {
 
  504         double level_in_lin, level_out_lin, checkbuf;
 
  509         level_in_lin = l->
volume[ch];
 
  512         if (
c->delay_buf_size <= 0) {
 
  513             checkbuf = ibuf[
i] * level_out_lin;
 
  535                                l->
delay_size) % 
c->delay_buf_size] * level_out_lin;
 
  578         double *
a, *dst = (
double *)
out->extended_data[ch];
 
  580         for (band = 0, abuf = in, bbuf = 
s->band_buf2, cbuf = 
s->band_buf1; band < s->nb_bands; band++) {
 
  639             "Multiband Compress or expand audio dynamic range."),
 
  641     .priv_class     = &mcompand_class,
 
  
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
 
static int request_frame(AVFilterLink *outlink)
 
static const AVFilterPad mcompand_outputs[]
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
static double cb(void *priv, double x, double y)
 
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
 
#define FILTER_SINGLE_SAMPLEFMT(sample_fmt_)
 
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
 
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
 
This structure describes decoded (raw) audio or video data.
 
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
 
int ff_request_frame(AVFilterLink *link)
Request an input frame from the filter at the other end of the link.
 
static const AVFilterPad mcompand_inputs[]
 
const char * name
Filter name.
 
int nb_channels
Number of channels in this layout.
 
A link between two filters.
 
AVFILTER_DEFINE_CLASS(mcompand)
 
static int config_output(AVFilterLink *outlink)
 
A filter pad used for either input or output.
 
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
 
char * av_strtok(char *s, const char *delim, char **saveptr)
Split the string into several tokens which can be accessed by successive calls to av_strtok().
 
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
 
#define FILTER_INPUTS(array)
 
static double get_volume(CompandT *s, double in_lin)
 
Describe the class of an AVClass context structure.
 
static __device__ float fabs(float a)
 
static void crossover(int ch, Crossover *p, double *ibuf, double *obuf_low, double *obuf_high, size_t len)
 
static int crossover_setup(AVFilterLink *outlink, Crossover *p, double frequency)
 
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
 
static void square_quadratic(double const *x, double *y)
 
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
 
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
 
static av_const double hypot(double x, double y)
 
static av_cold void uninit(AVFilterContext *ctx)
 
CompandSegment * segments
 
AVFilterContext * src
source filter
 
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
 
static int parse_points(char *points, int nb_points, double radius, CompandT *s, AVFilterContext *ctx)
 
int sample_rate
samples per second
 
int nb_samples
number of audio samples (per channel) described by this frame
 
#define i(width, name, range_min, range_max)
 
static const AVOption mcompand_options[]
 
static void count_items(char *item_str, int *nb_items, char delimiter)
 
uint8_t ** extended_data
pointers to the data planes/channels.
 
const char * name
Pad name.
 
void * av_calloc(size_t nmemb, size_t size)
 
#define FFSWAP(type, a, b)
 
@ AV_SAMPLE_FMT_DBLP
double, planar
 
AVChannelLayout ch_layout
channel layout of current buffer (see libavutil/channel_layout.h)
 
const AVFilter ff_af_mcompand
 
static const int16_t alpha[]
 
#define FILTER_OUTPUTS(array)
 
static int mcompand_channel(MCompandContext *c, CompBand *l, double *ibuf, double *obuf, int len, int ch)
 
static void update_volume(CompBand *cb, double in, int ch)