Go to the documentation of this file.
   43 #define MAX_CHANNELS        2 
   44 #define MAX_BYTESPERSAMPLE  3 
   46 #define APE_FRAMECODE_MONO_SILENCE    1 
   47 #define APE_FRAMECODE_STEREO_SILENCE  3 
   48 #define APE_FRAMECODE_PSEUDO_STEREO   4 
   50 #define HISTORY_SIZE 512 
   51 #define PREDICTOR_ORDER 8 
   53 #define PREDICTOR_SIZE 50 
   55 #define YDELAYA (18 + PREDICTOR_ORDER*4) 
   56 #define YDELAYB (18 + PREDICTOR_ORDER*3) 
   57 #define XDELAYA (18 + PREDICTOR_ORDER*2) 
   58 #define XDELAYB (18 + PREDICTOR_ORDER) 
   60 #define YADAPTCOEFFSA 18 
   61 #define XADAPTCOEFFSA 14 
   62 #define YADAPTCOEFFSB 10 
   63 #define XADAPTCOEFFSB 5 
   78 #define APE_FILTER_LEVELS 3 
  232     s->decoded_size = 
s->data_size = 0;
 
  264         s->interim_mode = -1;
 
  268                               "%d bits per coded sample", 
s->bps);
 
  278            s->compression_level, 
s->flags);
 
  280         !
s->compression_level ||
 
  283                s->compression_level);
 
  286     s->fset = 
s->compression_level / 1000 - 1;
 
  294     if (
s->fileversion < 3860) {
 
  297     } 
else if (
s->fileversion < 3900) {
 
  300     } 
else if (
s->fileversion < 3930) {
 
  303     } 
else if (
s->fileversion < 3990) {
 
  311     if (
s->fileversion < 3930) {
 
  314     } 
else if (
s->fileversion < 3950) {
 
  337 #define TOP_VALUE    ((unsigned int)1 << (CODE_BITS-1)) 
  338 #define SHIFT_BITS   (CODE_BITS - 9) 
  339 #define EXTRA_BITS   ((CODE_BITS-2) % 8 + 1) 
  340 #define BOTTOM_VALUE (TOP_VALUE >> 8) 
  345     ctx->rc.buffer = bytestream_get_byte(&
ctx->ptr);
 
  354         ctx->rc.buffer <<= 8;
 
  355         if(
ctx->ptr < 
ctx->data_end) {
 
  356             ctx->rc.buffer += *
ctx->ptr;
 
  361         ctx->rc.low    = (
ctx->rc.low << 8)    | ((
ctx->rc.buffer >> 1) & 0xFF);
 
  375     ctx->rc.help = 
ctx->rc.range / tot_f;
 
  376     return ctx->rc.low / 
ctx->rc.help;
 
  388     return ctx->rc.low / 
ctx->rc.help;
 
  400     ctx->rc.low  -= 
ctx->rc.help * lt_f;
 
  401     ctx->rc.range = 
ctx->rc.help * sy_f;
 
  413 #define MODEL_ELEMENTS 64 
  419         0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
 
  420     62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
 
  421     65450, 65469, 65480, 65487, 65491, 65493,
 
  428     14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
 
  429     1104, 677, 415, 248, 150, 89, 54, 31,
 
  437         0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
 
  438     64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
 
  439     65485, 65488, 65490, 65491, 65492, 65493,
 
  446     19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
 
  447     261, 119, 65, 31, 19, 10, 6, 3,
 
  458                                    const uint16_t counts[],
 
  459                                    const uint16_t counts_diff[])
 
  466         symbol= cf - 65535 + 63;
 
  473     for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
 
  483     int lim = rice->
k ? (1 << (rice->
k + 4)) : 0;
 
  484     rice->
ksum += ((x + 1) / 2) - ((rice->
ksum + 16) >> 5);
 
  486     if (rice->
ksum < lim)
 
  488     else if (rice->
ksum >= (1 << (rice->
k + 5)) && rice->
k < 24)
 
  511     if (
ctx->fileversion > 3880) {
 
  527     rice->
ksum += x - (rice->
ksum + 8 >> 4);
 
  528     if (rice->
ksum < (rice->
k ? 1 << (rice->
k + 4) : 0))
 
  530     else if (rice->
ksum >= (1 << (rice->
k + 5)) && rice->
k < 24)
 
  534     return ((x >> 1) ^ ((x & 1) - 1)) + 1;
 
  548         tmpk = (rice->
k < 1) ? 0 : rice->
k - 1;
 
  556     } 
else if (tmpk <= 31) {
 
  568     return ((x >> 1) ^ ((x & 1) - 1)) + 1;
 
  585     if (pivot < 0x10000) {
 
  589         int base_hi = pivot, base_lo;
 
  592         while (base_hi & ~0xFFFF) {
 
  601         base = (base_hi << bbits) + base_lo;
 
  609     return ((x >> 1) ^ ((x & 1) - 1)) + 1;
 
  621     unsigned ksummax, ksummin;
 
  624     for (
i = 0; 
i < 
FFMIN(blockstodecode, 5); 
i++) {
 
  629     if (blockstodecode <= 5)
 
  635     for (; 
i < 
FFMIN(blockstodecode, 64); 
i++) {
 
  643     if (blockstodecode <= 64)
 
  647     ksummax = 1 << rice->
k + 7;
 
  648     ksummin = rice->
k ? (1 << rice->
k + 6) : 0;
 
  649     for (; 
i < blockstodecode; 
i++) {
 
  656         while (rice->
ksum < ksummin) {
 
  658             ksummin = rice->
k ? ksummin >> 1 : 0;
 
  661         while (rice->
ksum >= ksummax) {
 
  666             ksummin = ksummin ? ksummin << 1 : 128;
 
  671     for (
i = 0; 
i < blockstodecode; 
i++)
 
  693     while (blockstodecode--)
 
  701     int blocks = blockstodecode;
 
  703     while (blockstodecode--)
 
  713     while (blockstodecode--)
 
  721     int blocks = blockstodecode;
 
  723     while (blockstodecode--)
 
  738     while (blockstodecode--) {
 
  748     while (blockstodecode--)
 
  757     while (blockstodecode--) {
 
  766     if (
ctx->fileversion >= 3900) {
 
  767         if (
ctx->data_end - 
ctx->ptr < 6)
 
  769         ctx->CRC = bytestream_get_be32(&
ctx->ptr);
 
  776     ctx->CRC_state = UINT32_MAX;
 
  777     if ((
ctx->fileversion > 3820) && (
ctx->CRC & 0x80000000)) {
 
  778         ctx->CRC &= ~0x80000000;
 
  780         if (
ctx->data_end - 
ctx->ptr < 6)
 
  782         ctx->frameflags = bytestream_get_be32(&
ctx->ptr);
 
  787     ctx->riceX.ksum = (1 << 
ctx->riceX.k) * 16;
 
  789     ctx->riceY.ksum = (1 << 
ctx->riceY.k) * 16;
 
  791     if (
ctx->fileversion >= 3900) {
 
  833     if (
ctx->fileversion < 3930) {
 
  853     if (
ctx->fileversion < 3930) {
 
  873     return (x < 0) - (x > 0);
 
  889     predictionA = p->
buf[delayA] * 2
U - p->
buf[delayA - 1];
 
  892     if ((
decoded ^ predictionA) > 0)
 
  904                                         const int delayA,  
const int delayB,
 
  905                                         const int start,   
const int shift)
 
  907     int32_t predictionA, predictionB, sign;
 
  920     d1 = (p->
buf[delayA] - (unsigned)p->
buf[delayA - 1]) * 2;
 
  921     d0 =  p->
buf[delayA] + ((p->
buf[delayA - 2] - (unsigned)p->
buf[delayA - 1]) * 8);
 
  922     d3 =  p->
buf[delayB] * 2
U - p->
buf[delayB - 1];
 
  951     int32_t coeffs[256], delay[256+256], *delayp = delay;
 
  956     memset(coeffs, 0, order * 
sizeof(*coeffs));
 
  957     for (
i = 0; 
i < order; 
i++)
 
  959     for (
i = order; 
i < length; 
i++) {
 
  963             for (j = 0; j < order; j++) {
 
  964                 dotprod += delayp[j] * (unsigned)coeffs[j];
 
  965                 coeffs[j] += (delayp[j] >> 31) | 1;
 
  967         } 
else if (sign == -1) {
 
  968             for (j = 0; j < order; j++) {
 
  969                 dotprod += delayp[j] * (unsigned)coeffs[j];
 
  970                 coeffs[j] -= (delayp[j] >> 31) | 1;
 
  973             for (j = 0; j < order; j++) {
 
  974                 dotprod += delayp[j] * (unsigned)coeffs[j];
 
  980         if (delayp - delay == 256) {
 
  981             memcpy(delay, delayp, 
sizeof(*delay)*256);
 
  992     uint32_t coeffs[8] = { 0 };
 
  994     for (
i = 0; 
i < length; 
i++) {
 
  997         for (j = 7; j >= 0; j--) {
 
  998             dotprod += delay[j] * coeffs[j];
 
  999             coeffs[j] += ((delay[j] >> 31) | 1) * sign;
 
 1001         for (j = 7; j > 0; j--)
 
 1002             delay[j] = delay[j - 1];
 
 1004         buffer[
i] -= (unsigned)(dotprod >> 9);
 
 1013     int start = 4, 
shift = 10;
 
 1020         int order = 128, 
shift2 = 11;
 
 1022         if (
ctx->fileversion >= 3830) {
 
 1035         int X = *decoded0, 
Y = *decoded1;
 
 1067     int start = 4, 
shift = 10;
 
 1073         int order = 128, 
shift2 = 11;
 
 1075         if (
ctx->fileversion >= 3830) {
 
 1113     uint32_t d0, d1, d2, d3;
 
 1116     d0 = p->
buf[delayA    ];
 
 1117     d1 = p->
buf[delayA    ] - (unsigned)p->
buf[delayA - 1];
 
 1118     d2 = p->
buf[delayA - 1] - (
unsigned)p->
buf[delayA - 2];
 
 1119     d3 = p->
buf[delayA - 2] - (unsigned)p->
buf[delayA - 3];
 
 1148         int Y = *decoded1, 
X = *decoded0;
 
 1190                                                     const int delayA,  
const int delayB,
 
 1191                                                     const int adaptA,  
const int adaptB,
 
 1194     int64_t predictionA, predictionB;
 
 1199     p->
buf[delayA - 1] = p->
buf[delayA] - (uint64_t)p->
buf[delayA - 1];
 
 1210     p->
buf[delayB - 1] = p->
buf[delayB] - (uint64_t)p->
buf[delayB - 1];
 
 1221         predictionA = (
int32_t)predictionA;
 
 1222         predictionB = (
int32_t)predictionB;
 
 1225         p->
lastA[
filter] = 
decoded + ((int64_t)((uint64_t)predictionA + (predictionB >> 1)) >> 10);
 
 1251     if (
ctx->interim_mode == -1) {
 
 1252         p_interim = *p_default;
 
 1254         memcpy(
ctx->interim[0], 
ctx->decoded[0], 
sizeof(*
ctx->interim[0])*count);
 
 1255         memcpy(
ctx->interim[1], 
ctx->decoded[1], 
sizeof(*
ctx->interim[1])*count);
 
 1258     for (
int pass = 0; pass < num_passes; pass++) {
 
 1265             decoded0 = 
ctx->interim[0];
 
 1266             decoded1 = 
ctx->interim[1];
 
 1269             decoded0 = 
ctx->decoded[0];
 
 1270             decoded1 = 
ctx->decoded[1];
 
 1285             if (num_passes > 1) {
 
 1307     if (num_passes > 1 && 
ctx->interim_mode > 0) {
 
 1308         memcpy(
ctx->decoded[0], 
ctx->interim[0], 
sizeof(*
ctx->interim[0])*lcount);
 
 1309         memcpy(
ctx->decoded[1], 
ctx->interim[1], 
sizeof(*
ctx->interim[1])*lcount);
 
 1310         *p_default = p_interim;
 
 1319     int32_t predictionA, currentA, 
A, sign;
 
 1323     currentA = p->
lastA[0];
 
 1336         currentA = 
A + (uint64_t)(predictionA >> 10);
 
 1356         p->
filterA[0] = currentA + (uint64_t)((int64_t)(p->
filterA[0] * 31
U) >> 5);
 
 1357         *(decoded0++) = p->
filterA[0];
 
 1360     p->
lastA[0] = currentA;
 
 1366     f->historybuffer = buf + order;
 
 1367     f->delay       = 
f->historybuffer + order * 2;
 
 1368     f->adaptcoeffs = 
f->historybuffer + order;
 
 1370     memset(
f->historybuffer, 0, (order * 2) * 
sizeof(*
f->historybuffer));
 
 1371     memset(
f->coeffs, 0, order * 
sizeof(*
f->coeffs));
 
 1382                             int32_t *
data, 
int count, 
int order, 
int fracbits)
 
 1389         res = 
ctx->adsp.scalarproduct_and_madd_int16(
f->coeffs,
 
 1391                                                      f->adaptcoeffs - order,
 
 1393         res = (int64_t)(res + (1LL << (fracbits - 1))) >> fracbits;
 
 1394         res += (unsigned)*
data;
 
 1402             f->adaptcoeffs[0]  = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
 
 1403             f->adaptcoeffs[-4] >>= 1;
 
 1404             f->adaptcoeffs[-8] >>= 1;
 
 1412                                   (8 << ((absres > 
f->avg * 3LL) + (absres > (
f->avg + 
f->avg / 3))));
 
 1422                 *
f->adaptcoeffs = 0;
 
 1424             f->avg += (
int)(absres - (
unsigned)
f->avg) / 16;
 
 1426             f->adaptcoeffs[-1] >>= 1;
 
 1427             f->adaptcoeffs[-2] >>= 1;
 
 1428             f->adaptcoeffs[-8] >>= 1;
 
 1435             memmove(
f->historybuffer, 
f->delay - (order * 2),
 
 1436                     (order * 2) * 
sizeof(*
f->historybuffer));
 
 1437             f->delay = 
f->historybuffer + order * 2;
 
 1438             f->adaptcoeffs = 
f->historybuffer + order;
 
 1445                          int count, 
int order, 
int fracbits)
 
 1490     ctx->entropy_decode_mono(
ctx, count);
 
 1495     ctx->predictor_decode_mono(
ctx, count);
 
 1498     if (
ctx->channels == 2) {
 
 1499         memcpy(
ctx->decoded[1], 
ctx->decoded[0], count * 
sizeof(*
ctx->decoded[1]));
 
 1505     unsigned left, right;
 
 1515     ctx->entropy_decode_stereo(
ctx, count);
 
 1520     ctx->predictor_decode_stereo(
ctx, count);
 
 1524         left = *decoded1 - (unsigned)(*decoded0 / 2);
 
 1525         right = 
left + *decoded0;
 
 1527         *(decoded0++) = 
left;
 
 1528         *(decoded1++) = right;
 
 1533                             int *got_frame_ptr, 
AVPacket *avpkt)
 
 1535     const uint8_t *buf = avpkt->
data;
 
 1542     uint64_t decoded_buffer_size;
 
 1549         uint32_t nblocks, 
offset;
 
 1556         if (avpkt->
size < 8) {
 
 1560         buf_size = avpkt->
size & ~3;
 
 1561         if (buf_size != avpkt->
size) {
 
 1563                    "extra bytes at the end will be skipped.\n");
 
 1565         if (
s->fileversion < 3950) 
 
 1570         s->bdsp.bswap_buf((uint32_t *) 
s->data, (
const uint32_t *) buf,
 
 1572         memset(
s->data + (buf_size & ~3), 0, buf_size & 3);
 
 1574         s->data_end = 
s->data + buf_size;
 
 1576         nblocks = bytestream_get_be32(&
s->ptr);
 
 1577         offset  = bytestream_get_be32(&
s->ptr);
 
 1578         if (
s->fileversion >= 3900) {
 
 1585             if (
s->data_end - 
s->ptr < 
offset) {
 
 1593             if (
s->fileversion > 3800)
 
 1599         if (!nblocks || nblocks > INT_MAX / 2 / 
sizeof(*
s->decoded_buffer) - 8) {
 
 1610         s->samples = nblocks;
 
 1618     blockstodecode = 
FFMIN(
s->blocks_per_loop, 
s->samples);
 
 1621     if (
s->fileversion < 3930)
 
 1622         blockstodecode = 
s->samples;
 
 1625     decoded_buffer_size = 2LL * 
FFALIGN(blockstodecode, 8) * 
sizeof(*
s->decoded_buffer);
 
 1636     if (!
s->decoded_buffer)
 
 1638     memset(
s->decoded_buffer, 0, decoded_buffer_size);
 
 1639     s->decoded[0] = 
s->decoded_buffer;
 
 1640     s->decoded[1] = 
s->decoded_buffer + 
FFALIGN(blockstodecode, 8);
 
 1642     if (
s->interim_mode < 0) {
 
 1644         if (!
s->interim_buffer)
 
 1646         memset(
s->interim_buffer, 0, decoded_buffer_size);
 
 1647         s->interim[0] = 
s->interim_buffer;
 
 1648         s->interim[1] = 
s->interim_buffer + 
FFALIGN(blockstodecode, 8);
 
 1651         s->interim_size = 0;
 
 1652         memset(
s->interim, 0, 
sizeof(
s->interim));
 
 1670         for (ch = 0; ch < 
s->channels; ch++) {
 
 1672             for (
i = 0; 
i < blockstodecode; 
i++)
 
 1673                 *sample8++ = (
s->decoded[ch][
i] + 0x80U) & 0xff;
 
 1677         for (ch = 0; ch < 
s->channels; ch++) {
 
 1679             for (
i = 0; 
i < blockstodecode; 
i++)
 
 1680                 *sample16++ = 
s->decoded[ch][
i];
 
 1684         for (ch = 0; ch < 
s->channels; ch++) {
 
 1686             for (
i = 0; 
i < blockstodecode; 
i++)
 
 1687                 *sample24++ = 
s->decoded[ch][
i] * 256
U;
 
 1692     s->samples -= blockstodecode;
 
 1695         s->fileversion >= 3900) {
 
 1696         uint32_t crc = 
s->CRC_state;
 
 1698         int stride = 
s->bps == 24 ? 4 : (
s->bps>>3);
 
 1700         int bytes  = 
s->bps >> 3;
 
 1702         for (
i = 0; 
i < blockstodecode; 
i++) {
 
 1703             for (ch = 0; ch < 
s->channels; ch++) {
 
 1707                 for(
int j = 0; j<
stride; j++)
 
 1708                     smp[j] = smp_native[
stride-j-1];
 
 1716         if (!
s->samples && (~crc >> 1) ^ 
s->CRC) {
 
 1718                    "frames may have been affected as well.\n");
 
 1728     return !
s->samples ? avpkt->
size : 0;
 
 1737 #define OFFSET(x) offsetof(APEContext, x) 
 1738 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM) 
 1741     { 
"all",         
"no maximum. decode all samples for each packet at once", 0,                       
AV_OPT_TYPE_CONST, { .i64 = INT_MAX }, INT_MIN, INT_MAX, 
PAR, 
"max_samples" },
 
 1762 #if FF_API_SUBFRAMES 
 1763                       AV_CODEC_CAP_SUBFRAMES |
 
  
APERice riceX
rice code parameters for the second channel
 
static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode)
 
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
 
#define AV_LOG_WARNING
Something somehow does not look correct.
 
static int init_frame_decoder(APEContext *ctx)
 
uint8_t * data
current frame data
 
static void range_start_decoding(APEContext *ctx)
Start the decoder.
 
static void apply_filter(APEContext *ctx, APEFilter *f, int32_t *data0, int32_t *data1, int count, int order, int fracbits)
 
#define AV_EF_EXPLODE
abort decoding on minor error detection
 
#define PREDICTOR_SIZE
Total size of all predictor histories.
 
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
 
static int get_bits_left(GetBitContext *gb)
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
#define AV_CHANNEL_LAYOUT_STEREO
 
int16_t * filterbuf[APE_FILTER_LEVELS]
filter memory
 
#define APE_FILTER_LEVELS
 
uint32_t low
low end of interval
 
uint64_t coeffsA[2][4]
adaption coefficients
 
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
 
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
 
static int init_entropy_decoder(APEContext *ctx)
 
static const uint16_t counts_diff_3980[21]
Probability ranges for symbols in Monkey Audio version 3.98.
 
This structure describes decoded (raw) audio or video data.
 
static const AVClass ape_decoder_class
 
static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode)
 
static void predictor_decode_mono_3930(APEContext *ctx, int count)
 
APEFilter filters[APE_FILTER_LEVELS][2]
filters used for reconstruction
 
static void long_filter_ehigh_3830(int32_t *buffer, int length)
 
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
 
static void update_rice(APERice *rice, unsigned int x)
 
uint32_t CRC
signalled frame CRC
 
static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode)
 
#define AV_LOG_VERBOSE
Detailed information.
 
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce then the filter should push the output frames on the output link immediately As an exception to the previous rule if the input frame is enough to produce several output frames then the filter needs output only at least one per link The additional frames can be left buffered in the filter
 
uint32_t coeffsA[2][4]
adaption coefficients
 
static int get_k(int ksum)
 
static void ape_flush(AVCodecContext *avctx)
 
#define FFNABS(a)
Negative Absolute value.
 
void(* predictor_decode_mono)(struct APEContext *ctx, int count)
 
static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS]
Filter fraction bits depending on compression level.
 
int nb_channels
Number of channels in this layout.
 
int compression_level
compression levels
 
void(* entropy_decode_stereo)(struct APEContext *ctx, int blockstodecode)
 
static int range_decode_bits(APEContext *ctx, int n)
Decode n bits (n <= 16) without modelling.
 
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
 
av_cold void ff_llauddsp_init(LLAudDSPContext *c)
 
static void predictor_decode_stereo_3930(APEContext *ctx, int count)
 
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a it should return
 
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
 
static void predictor_decode_mono_3800(APEContext *ctx, int count)
 
AVCodec p
The public AVCodec.
 
static av_cold int ape_decode_init(AVCodecContext *avctx)
 
AVChannelLayout ch_layout
Audio channel layout.
 
static void ape_unpack_mono(APEContext *ctx, int count)
 
int fileversion
codec version, very important in decoding process
 
static int ape_decode_value_3860(APEContext *ctx, GetBitContext *gb, APERice *rice)
 
static void predictor_decode_stereo_3800(APEContext *ctx, int count)
 
static const AVOption options[]
 
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
 
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
 
APERangecoder rc
rangecoder used to decode actual values
 
int samples
samples left to decode in current frame
 
const uint8_t * ptr
current position in frame data
 
#define FF_CODEC_DECODE_CB(func)
 
int16_t * historybuffer
filter memory
 
int(* init)(AVBSFContext *ctx)
 
static void do_init_filter(APEFilter *f, int16_t *buf, int order)
 
#define av_assert0(cond)
assert() equivalent, that is always enabled.
 
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
 
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
 
static void long_filter_high_3800(int32_t *buffer, int order, int shift, int length)
 
#define APE_FRAMECODE_STEREO_SILENCE
 
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
 
unsigned int buffer
buffer for input/output
 
const FFCodec ff_ape_decoder
 
static void do_apply_filter(APEContext *ctx, int version, APEFilter *f, int32_t *data, int count, int order, int fracbits)
 
static int ape_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt)
 
#define CODEC_LONG_NAME(str)
 
static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode)
 
int fset
which filter set to use (calculated from compression level)
 
static int ape_decode_value_3900(APEContext *ctx, APERice *rice)
 
int32_t historybuffer[HISTORY_SIZE+PREDICTOR_SIZE]
 
#define LIBAVUTIL_VERSION_INT
 
uint32_t CRC_state
accumulated CRC
 
int frameflags
frame flags
 
Describe the class of an AVClass context structure.
 
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
 
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
 
#define FFABSU(a)
Unsigned Absolute value.
 
static int range_decode_culshift(APEContext *ctx, int shift)
Decode value with given size in bits.
 
static const int64_t initial_coeffs_3930_64bit[4]
 
static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode)
 
static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode)
 
static const uint16_t counts_3970[22]
Fixed probabilities for symbols in Monkey Audio version 3.97.
 
const char * av_default_item_name(void *ptr)
Return the context name.
 
static av_always_inline int predictor_update_3930(APEPredictor *p, const int decoded, const int filter, const int delayA)
 
static void init_predictor_decoder(APEContext *ctx)
 
@ COMPRESSION_LEVEL_EXTRA_HIGH
 
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data,...
 
static int range_decode_culfreq(APEContext *ctx, int tot_f)
Calculate cumulative frequency for next symbol.
 
int64_t historybuffer[HISTORY_SIZE+PREDICTOR_SIZE]
 
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
 
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
 
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
 
static av_always_inline int predictor_update_filter(APEPredictor64 *p, const int decoded, const int filter, const int delayA, const int delayB, const int adaptA, const int adaptB, int interim_mode)
 
@ AV_SAMPLE_FMT_U8P
unsigned 8 bits, planar
 
An AVChannelLayout holds information about the channel layout of audio data.
 
#define APE_FRAMECODE_PSEUDO_STEREO
 
static int shift(int a, int b)
 
void(* entropy_decode_mono)(struct APEContext *ctx, int blockstodecode)
 
enum AVSampleFormat sample_fmt
audio sample format
 
int16_t * coeffs
actual coefficients used in filtering
 
int16_t * delay
filtered values
 
uint32_t range
length of interval
 
int32_t * interim[MAX_CHANNELS]
decoded data for each channel
 
static const int32_t initial_coeffs_a_3800[3]
 
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
 
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
 
void(* predictor_decode_stereo)(struct APEContext *ctx, int count)
 
static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
 
uint64_t coeffsB[2][5]
adaption coefficients
 
APEPredictor64 predictor64
64bit predictor used for final reconstruction
 
static int ape_decode_value_3990(APEContext *ctx, APERice *rice)
 
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
 
static void decode_array_0000(APEContext *ctx, GetBitContext *gb, int32_t *out, APERice *rice, int blockstodecode)
 
static int range_get_symbol(APEContext *ctx, const uint16_t counts[], const uint16_t counts_diff[])
Decode symbol.
 
uint32_t coeffsB[2][5]
adaption coefficients
 
static void ape_unpack_stereo(APEContext *ctx, int count)
 
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
 
int nb_samples
number of audio samples (per channel) described by this frame
 
#define i(width, name, range_min, range_max)
 
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
 
static void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
Update decoding state.
 
static av_always_inline int filter_3800(APEPredictor *p, const unsigned decoded, const int filter, const int delayA, const int delayB, const int start, const int shift)
 
AVSampleFormat
Audio sample formats.
 
static void range_dec_normalize(APEContext *ctx)
Perform normalization.
 
static const int32_t initial_coeffs_fast_3320[1]
 
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
 
@ COMPRESSION_LEVEL_INSANE
 
static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode)
 
static const uint8_t shift2[6]
 
const char * name
Name of the codec implementation.
 
uint32_t help
bytes_to_follow resp. intermediate value
 
APECompressionLevel
Possible compression levels.
 
static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode)
 
static av_cold int ape_decode_close(AVCodecContext *avctx)
 
static void predictor_decode_stereo_3950(APEContext *ctx, int count)
 
static void predictor_decode_mono_3950(APEContext *ctx, int count)
 
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
 
static int get_rice_ook(GetBitContext *gb, int k)
 
int data_size
frame data allocated size
 
APEPredictor predictor
predictor used for final reconstruction
 
Filters applied to the decoded data.
 
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
 
main external API structure.
 
static const uint16_t counts_3980[22]
Fixed probabilities for symbols in Monkey Audio version 3.98.
 
@ COMPRESSION_LEVEL_NORMAL
 
static const uint16_t counts_diff_3970[21]
Probability ranges for symbols in Monkey Audio version 3.97.
 
the frame and frame reference mechanism is intended to as much as expensive copies of that data while still allowing the filters to produce correct results The data is stored in buffers represented by AVFrame structures Several references can point to the same frame buffer
 
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
 
void av_channel_layout_uninit(AVChannelLayout *channel_layout)
Free any allocated data in the channel layout and reset the channel count to 0.
 
static const int32_t initial_coeffs_b_3800[2]
 
int32_t * decoded[MAX_CHANNELS]
decoded data for each channel
 
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
 
static int APESIGN(int32_t x)
Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero)
 
APERice riceY
rice code parameters for the first channel
 
uint8_t * data_end
frame data end
 
static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS]
Filter orders depending on compression level.
 
static const int32_t initial_coeffs_3930[4]
 
Undefined Behavior In the C some operations are like signed integer overflow
 
#define avpriv_request_sample(...)
 
int blocks_per_loop
maximum number of samples to decode for each call
 
#define AV_CHANNEL_LAYOUT_MONO
 
static av_always_inline int filter_fast_3320(APEPredictor *p, const int decoded, const int filter, const int delayA)
 
int flags
global decoder flags
 
This structure stores compressed data.
 
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
 
int16_t * adaptcoeffs
adaptive filter coefficients used for correcting of actual filter coefficients
 
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
 
static void ape_apply_filters(APEContext *ctx, int32_t *decoded0, int32_t *decoded1, int count)
 
static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode)