Go to the documentation of this file.
202 unsigned long dest_len = uncompressed_size;
204 if (uncompress(
td->tmp, &dest_len,
src, compressed_size) != Z_OK ||
205 dest_len != uncompressed_size)
210 s->dsp.predictor(
td->tmp, uncompressed_size);
211 s->dsp.reorder_pixels(
td->uncompressed_data,
td->tmp, uncompressed_size);
216 static int rle(uint8_t *dst,
const uint8_t *
src,
217 int compressed_size,
int uncompressed_size)
220 const int8_t *
s =
src;
221 int ssize = compressed_size;
222 int dsize = uncompressed_size;
223 uint8_t *dend =
d + dsize;
232 if ((dsize -= count) < 0 ||
233 (ssize -= count + 1) < 0)
241 if ((dsize -= count) < 0 ||
261 rle(
td->tmp,
src, compressed_size, uncompressed_size);
265 ctx->dsp.predictor(
td->tmp, uncompressed_size);
266 ctx->dsp.reorder_pixels(
td->uncompressed_data,
td->tmp, uncompressed_size);
271 #define USHORT_RANGE (1 << 16)
272 #define BITMAP_SIZE (1 << 13)
279 if ((
i == 0) || (bitmap[
i >> 3] & (1 << (
i & 7))))
289 static void apply_lut(
const uint16_t *lut, uint16_t *dst,
int dsize)
293 for (
i = 0;
i < dsize; ++
i)
294 dst[
i] = lut[dst[
i]];
297 #define HUF_ENCBITS 16 // literal (value) bit length
298 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
302 uint64_t
c, n[59] = { 0 };
309 for (
i = 58;
i > 0; --
i) {
310 uint64_t nc = ((
c + n[
i]) >> 1);
319 freq[
i] = l | (n[l]++ << 6);
323 #define SHORT_ZEROCODE_RUN 59
324 #define LONG_ZEROCODE_RUN 63
325 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
326 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
336 for (; im <= iM; im++) {
345 if (im + zerun > iM + 1)
355 if (im + zerun > iM + 1)
377 for (
int i = im;
i < iM;
i++) {
379 td->he[j].len =
td->freq[
i] & 63;
380 td->he[j].code =
td->freq[
i] >> 6;
381 if (
td->he[j].len > 32) {
385 if (
td->he[j].len > 0)
396 if (
td->run_sym == -1) {
401 td->he[j].sym =
td->run_sym;
402 td->he[j].len =
td->freq[iM] & 63;
403 if (
td->he[j].len > 32) {
407 td->he[j].code =
td->freq[iM] >> 6;
412 &
td->he[0].len,
sizeof(
td->he[0]),
sizeof(
td->he[0].len),
413 &
td->he[0].code,
sizeof(
td->he[0]),
sizeof(
td->he[0].code),
414 &
td->he[0].sym,
sizeof(
td->he[0]),
sizeof(
td->he[0].sym), 0);
418 int no, uint16_t *
out)
431 if (oe == 0 || oe +
run > no)
449 uint16_t *dst,
int dst_size)
455 im = bytestream2_get_le32(gb);
456 iM = bytestream2_get_le32(gb);
458 nBits = bytestream2_get_le32(gb);
469 if (!
td->freq || !
td->he) {
485 return huf_decode(&
td->vlc, gb, nBits,
td->run_sym, dst_size, dst);
488 static inline void wdec14(uint16_t l, uint16_t
h, uint16_t *
a, uint16_t *
b)
493 int ai = ls + (hi & 1) + (hi >> 1);
495 int16_t bs = ai - hi;
502 #define A_OFFSET (1 << (NBITS - 1))
503 #define MOD_MASK ((1 << NBITS) - 1)
505 static inline void wdec16(uint16_t l, uint16_t
h, uint16_t *
a, uint16_t *
b)
516 int ny,
int oy, uint16_t mx)
518 int w14 = (mx < (1 << 14));
519 int n = (nx > ny) ? ny : nx;
532 uint16_t *ey = in + oy * (ny - p2);
533 uint16_t i00, i01, i10, i11;
539 for (; py <= ey; py += oy2) {
541 uint16_t *ex = py + ox * (nx - p2);
543 for (; px <= ex; px += ox2) {
544 uint16_t *p01 = px + ox1;
545 uint16_t *p10 = px + oy1;
546 uint16_t *p11 = p10 + ox1;
549 wdec14(*px, *p10, &i00, &i10);
550 wdec14(*p01, *p11, &i01, &i11);
551 wdec14(i00, i01, px, p01);
552 wdec14(i10, i11, p10, p11);
554 wdec16(*px, *p10, &i00, &i10);
555 wdec16(*p01, *p11, &i01, &i11);
556 wdec16(i00, i01, px, p01);
557 wdec16(i10, i11, p10, p11);
562 uint16_t *p10 = px + oy1;
565 wdec14(*px, *p10, &i00, p10);
567 wdec16(*px, *p10, &i00, p10);
575 uint16_t *ex = py + ox * (nx - p2);
577 for (; px <= ex; px += ox2) {
578 uint16_t *p01 = px + ox1;
581 wdec14(*px, *p01, &i00, p01);
583 wdec16(*px, *p01, &i00, p01);
598 uint16_t maxval, min_non_zero, max_non_zero;
600 uint16_t *
tmp = (uint16_t *)
td->tmp;
612 if (!
td->bitmap || !
td->lut) {
619 min_non_zero = bytestream2_get_le16(&gb);
620 max_non_zero = bytestream2_get_le16(&gb);
626 if (min_non_zero <= max_non_zero)
628 max_non_zero - min_non_zero + 1);
629 memset(
td->bitmap + max_non_zero + 1, 0,
BITMAP_SIZE - max_non_zero - 1);
639 for (
i = 0;
i <
s->nb_channels;
i++) {
647 for (j = 0; j < pixel_half_size; j++)
649 td->xsize * pixel_half_size, maxval);
650 ptr +=
td->xsize *
td->ysize * pixel_half_size;
655 out = (uint16_t *)
td->uncompressed_data;
658 for (j = 0; j <
s->nb_channels; j++) {
665 in =
tmp + tmp_offset *
td->xsize *
td->ysize +
i *
td->xsize * pixel_half_size;
666 tmp_offset += pixel_half_size;
669 s->bbdsp.bswap16_buf(
out, in,
td->xsize * pixel_half_size);
671 memcpy(
out, in,
td->xsize * 2 * pixel_half_size);
673 out +=
td->xsize * pixel_half_size;
681 int compressed_size,
int uncompressed_size,
684 unsigned long dest_len, expected_len = 0;
685 const uint8_t *in =
td->tmp;
689 for (
i = 0;
i <
s->nb_channels;
i++) {
691 expected_len += (
td->xsize *
td->ysize * 3);
692 }
else if (
s->channels[
i].pixel_type ==
EXR_HALF) {
693 expected_len += (
td->xsize *
td->ysize * 2);
695 expected_len += (
td->xsize *
td->ysize * 4);
699 dest_len = expected_len;
701 if (uncompress(
td->tmp, &dest_len,
src, compressed_size) != Z_OK) {
703 }
else if (dest_len != expected_len) {
707 out =
td->uncompressed_data;
708 for (
i = 0;
i <
td->ysize;
i++)
709 for (
c = 0;
c <
s->nb_channels;
c++) {
711 const uint8_t *ptr[4];
717 ptr[1] = ptr[0] +
td->xsize;
718 ptr[2] = ptr[1] +
td->xsize;
719 in = ptr[2] +
td->xsize;
721 for (j = 0; j <
td->xsize; ++j) {
722 uint32_t
diff = ((unsigned)*(ptr[0]++) << 24) |
723 (*(ptr[1]++) << 16) |
731 ptr[1] = ptr[0] +
td->xsize;
732 in = ptr[1] +
td->xsize;
733 for (j = 0; j <
td->xsize; j++) {
734 uint32_t
diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
742 ptr[1] = ptr[0] +
s->xdelta;
743 ptr[2] = ptr[1] +
s->xdelta;
744 ptr[3] = ptr[2] +
s->xdelta;
745 in = ptr[3] +
s->xdelta;
747 for (j = 0; j <
s->xdelta; ++j) {
748 uint32_t
diff = ((uint32_t)*(ptr[0]++) << 24) |
749 (*(ptr[1]++) << 16) |
750 (*(ptr[2]++) << 8 ) |
766 uint16_t
shift = (
b[ 2] >> 2) & 15;
770 s[ 0] = (
b[0] << 8) |
b[1];
772 s[ 4] =
s[ 0] + ((((
b[ 2] << 4) | (
b[ 3] >> 4)) & 0x3f) <<
shift) -
bias;
773 s[ 8] =
s[ 4] + ((((
b[ 3] << 2) | (
b[ 4] >> 6)) & 0x3f) <<
shift) -
bias;
777 s[ 5] =
s[ 4] + ((((
b[ 5] << 4) | (
b[ 6] >> 4)) & 0x3f) <<
shift) -
bias;
778 s[ 9] =
s[ 8] + ((((
b[ 6] << 2) | (
b[ 7] >> 6)) & 0x3f) <<
shift) -
bias;
782 s[ 6] =
s[ 5] + ((((
b[ 8] << 4) | (
b[ 9] >> 4)) & 0x3f) <<
shift) -
bias;
783 s[10] =
s[ 9] + ((((
b[ 9] << 2) | (
b[10] >> 6)) & 0x3f) <<
shift) -
bias;
787 s[ 7] =
s[ 6] + ((((
b[11] << 4) | (
b[12] >> 4)) & 0x3f) <<
shift) -
bias;
788 s[11] =
s[10] + ((((
b[12] << 2) | (
b[13] >> 6)) & 0x3f) <<
shift) -
bias;
791 for (
i = 0;
i < 16; ++
i) {
803 s[0] = (
b[0] << 8) |
b[1];
810 for (
i = 1;
i < 16;
i++)
817 const int8_t *sr =
src;
818 int stay_to_uncompress = compressed_size;
819 int nb_b44_block_w, nb_b44_block_h;
820 int index_tl_x, index_tl_y, index_out, index_tmp;
821 uint16_t tmp_buffer[16];
823 int target_channel_offset = 0;
826 nb_b44_block_w =
td->xsize / 4;
827 if ((
td->xsize % 4) != 0)
830 nb_b44_block_h =
td->ysize / 4;
831 if ((
td->ysize % 4) != 0)
834 for (
c = 0;
c <
s->nb_channels;
c++) {
836 for (iY = 0; iY < nb_b44_block_h; iY++) {
837 for (iX = 0; iX < nb_b44_block_w; iX++) {
838 if (stay_to_uncompress < 3)
841 if (
src[compressed_size - stay_to_uncompress + 2] == 0xfc) {
844 stay_to_uncompress -= 3;
846 if (stay_to_uncompress < 14)
850 stay_to_uncompress -= 14;
857 for (y = index_tl_y; y <
FFMIN(index_tl_y + 4,
td->ysize); y++) {
858 for (x = index_tl_x; x <
FFMIN(index_tl_x + 4,
td->xsize); x++) {
859 index_out = target_channel_offset *
td->xsize + y *
td->channel_line_size + 2 * x;
860 index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
861 td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
862 td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
867 target_channel_offset += 2;
869 if (stay_to_uncompress < td->ysize *
td->xsize * 4)
872 for (y = 0; y <
td->ysize; y++) {
873 index_out = target_channel_offset *
td->xsize + y *
td->channel_line_size;
874 memcpy(&
td->uncompressed_data[index_out], sr,
td->xsize * 4);
877 target_channel_offset += 4;
879 stay_to_uncompress -=
td->ysize *
td->xsize * 4;
895 }
else if ((
val >> 8) == 0xff) {
917 float alpha[4], beta[4], theta[4], gamma[4];
935 gamma[0] = theta[0] + theta[1];
936 gamma[1] = theta[3] + theta[2];
937 gamma[2] = theta[3] - theta[2];
938 gamma[3] = theta[0] - theta[1];
940 blk[0 *
step] = gamma[0] + beta[0];
941 blk[1 *
step] = gamma[1] + beta[1];
942 blk[2 *
step] = gamma[2] + beta[2];
943 blk[3 *
step] = gamma[3] + beta[3];
945 blk[4 *
step] = gamma[3] - beta[3];
946 blk[5 *
step] = gamma[2] - beta[2];
947 blk[6 *
step] = gamma[1] - beta[1];
948 blk[7 *
step] = gamma[0] - beta[0];
953 for (
int i = 0;
i < 8;
i++)
956 for (
int i = 0;
i < 8;
i++) {
963 float *
b,
float *
g,
float *
r)
965 *
r = y + 1.5747f * v;
966 *
g = y - 0.1873f *
u - 0.4682f * v;
967 *
b = y + 1.8556f *
u;
986 int64_t
version, lo_usize, lo_size;
987 int64_t ac_size, dc_size, rle_usize, rle_csize, rle_raw_size;
988 int64_t ac_count, dc_count, ac_compression;
989 const int dc_w =
td->xsize >> 3;
990 const int dc_h =
td->ysize >> 3;
994 if (compressed_size <= 88)
1012 if ( compressed_size < (uint64_t)(lo_size | ac_size | dc_size | rle_csize) || compressed_size < 88LL + lo_size + ac_size + dc_size + rle_csize
1013 || ac_count > (uint64_t)INT_MAX/2
1018 skip = bytestream2_get_le16(&gb);
1025 if (lo_usize > uncompressed_size)
1031 unsigned long dest_len;
1034 if (ac_count > 3LL *
td->xsize *
s->scan_lines_per_block)
1037 dest_len = ac_count * 2LL;
1043 switch (ac_compression) {
1050 if (uncompress(
td->ac_data, &dest_len, agb.
buffer, ac_size) != Z_OK ||
1051 dest_len != ac_count * 2LL)
1062 unsigned long dest_len;
1065 if (dc_count != dc_w * dc_h * 3)
1068 dest_len = dc_count * 2LL;
1074 if (uncompress(
td->dc_data +
FFALIGN(dest_len, 64), &dest_len, agb.
buffer, dc_size) != Z_OK ||
1075 (dest_len != dc_count * 2LL))
1078 s->dsp.predictor(
td->dc_data +
FFALIGN(dest_len, 64), dest_len);
1079 s->dsp.reorder_pixels(
td->dc_data,
td->dc_data +
FFALIGN(dest_len, 64), dest_len);
1084 if (rle_raw_size > 0 && rle_csize > 0 && rle_usize > 0) {
1085 unsigned long dest_len = rle_usize;
1092 if (!
td->rle_raw_data)
1095 if (uncompress(
td->rle_data, &dest_len, gb.
buffer, rle_csize) != Z_OK ||
1096 (dest_len != rle_usize))
1099 ret =
rle(
td->rle_raw_data,
td->rle_data, rle_usize, rle_raw_size);
1107 for (
int y = 0; y <
td->ysize; y += 8) {
1108 for (
int x = 0; x <
td->xsize; x += 8) {
1109 memset(
td->block, 0,
sizeof(
td->block));
1111 for (
int j = 0; j < 3; j++) {
1113 const int idx = (x >> 3) + (y >> 3) * dc_w + dc_w * dc_h * j;
1114 uint16_t *
dc = (uint16_t *)
td->dc_data;
1119 block[0] = dc_val.f;
1125 const int o =
s->nb_channels == 4;
1126 float *bo = ((
float *)
td->uncompressed_data) +
1127 y *
td->xsize *
s->nb_channels +
td->xsize * (o + 0) + x;
1128 float *go = ((
float *)
td->uncompressed_data) +
1129 y *
td->xsize *
s->nb_channels +
td->xsize * (o + 1) + x;
1130 float *ro = ((
float *)
td->uncompressed_data) +
1131 y *
td->xsize *
s->nb_channels +
td->xsize * (o + 2) + x;
1132 float *yb =
td->block[0];
1133 float *
ub =
td->block[1];
1134 float *vb =
td->block[2];
1136 for (
int yy = 0; yy < 8; yy++) {
1137 for (
int xx = 0; xx < 8; xx++) {
1138 const int idx = xx + yy * 8;
1140 convert(yb[idx],
ub[idx], vb[idx], &bo[xx], &go[xx], &ro[xx]);
1147 bo +=
td->xsize *
s->nb_channels;
1148 go +=
td->xsize *
s->nb_channels;
1149 ro +=
td->xsize *
s->nb_channels;
1155 if (
s->nb_channels < 4)
1158 for (
int y = 0; y <
td->ysize &&
td->rle_raw_data; y++) {
1159 uint32_t *ao = ((uint32_t *)
td->uncompressed_data) + y *
td->xsize *
s->nb_channels;
1160 uint8_t *ai0 =
td->rle_raw_data + y *
td->xsize;
1161 uint8_t *ai1 =
td->rle_raw_data + y *
td->xsize + rle_raw_size / 2;
1163 for (
int x = 0; x <
td->xsize; x++) {
1164 uint16_t ha = ai0[x] | (ai1[x] << 8);
1174 int jobnr,
int threadnr)
1179 const uint8_t *channel_buffer[4] = { 0 };
1180 const uint8_t *buf =
s->buf;
1181 uint64_t line_offset, uncompressed_size;
1185 uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1188 int bxmin = 0, axmax = 0, window_xoffset = 0;
1189 int window_xmin, window_xmax, window_ymin, window_ymax;
1190 int data_xoffset, data_yoffset, data_window_offset, xsize, ysize;
1191 int i, x, buf_size =
s->buf_size;
1192 int c, rgb_channel_count;
1193 float one_gamma = 1.0f /
s->gamma;
1197 line_offset =
AV_RL64(
s->gb.buffer + jobnr * 8);
1200 if (buf_size < 20 || line_offset > buf_size - 20)
1203 src = buf + line_offset + 20;
1204 if (
s->is_multipart)
1213 if (data_size <= 0 || data_size > buf_size - line_offset - 20)
1216 if (tile_level_x || tile_level_y) {
1221 if (tile_x &&
s->tile_attr.xSize + (int64_t)
FFMAX(
s->xmin, 0) >= INT_MAX / tile_x )
1223 if (tile_y &&
s->tile_attr.ySize + (int64_t)
FFMAX(
s->ymin, 0) >= INT_MAX / tile_y )
1226 line =
s->ymin +
s->tile_attr.ySize * tile_y;
1227 col =
s->tile_attr.xSize * tile_x;
1230 s->xmin + col < s->xmin ||
s->xmin + col >
s->xmax)
1233 td->ysize =
FFMIN(
s->tile_attr.ySize,
s->ydelta - tile_y *
s->tile_attr.ySize);
1234 td->xsize =
FFMIN(
s->tile_attr.xSize,
s->xdelta - tile_x *
s->tile_attr.xSize);
1236 if (
td->xsize * (uint64_t)
s->current_channel_offset > INT_MAX ||
1240 td->channel_line_size =
td->xsize *
s->current_channel_offset;
1241 uncompressed_size =
td->channel_line_size * (uint64_t)
td->ysize;
1243 if (buf_size < 8 || line_offset > buf_size - 8)
1246 src = buf + line_offset + 8;
1247 if (
s->is_multipart)
1255 if (data_size <= 0 || data_size > buf_size - line_offset - 8)
1258 td->ysize =
FFMIN(
s->scan_lines_per_block,
s->ymax -
line + 1);
1259 td->xsize =
s->xdelta;
1261 if (
td->xsize * (uint64_t)
s->current_channel_offset > INT_MAX ||
1265 td->channel_line_size =
td->xsize *
s->current_channel_offset;
1266 uncompressed_size =
td->channel_line_size * (uint64_t)
td->ysize;
1268 if ((
s->compression ==
EXR_RAW && (data_size != uncompressed_size ||
1269 line_offset > buf_size - uncompressed_size)) ||
1270 (
s->compression !=
EXR_RAW && (data_size > uncompressed_size ||
1271 line_offset > buf_size - data_size))) {
1280 xsize = window_xmax - window_xmin;
1281 ysize = window_ymax - window_ymin;
1284 if (xsize <= 0 || ysize <= 0)
1291 window_xoffset =
FFMAX(0,
s->xmin);
1293 bxmin = window_xoffset *
step;
1297 if(col +
td->xsize ==
s->xdelta) {
1298 window_xmax = avctx->
width;
1306 if (data_size < uncompressed_size || s->is_tile) {
1312 if (data_size < uncompressed_size) {
1314 &
td->uncompressed_size, uncompressed_size + 64);
1316 if (!
td->uncompressed_data)
1320 switch (
s->compression) {
1347 src =
td->uncompressed_data;
1353 data_window_offset = (data_yoffset *
td->channel_line_size) + data_xoffset;
1356 channel_buffer[0] =
src + (
td->xsize *
s->channel_offsets[0]) + data_window_offset;
1357 channel_buffer[1] =
src + (
td->xsize *
s->channel_offsets[1]) + data_window_offset;
1358 channel_buffer[2] =
src + (
td->xsize *
s->channel_offsets[2]) + data_window_offset;
1359 rgb_channel_count = 3;
1361 channel_buffer[0] =
src + (
td->xsize *
s->channel_offsets[1]) + data_window_offset;
1362 rgb_channel_count = 1;
1364 if (
s->channel_offsets[3] >= 0)
1365 channel_buffer[3] =
src + (
td->xsize *
s->channel_offsets[3]) + data_window_offset;
1369 int channel_count =
s->channel_offsets[3] >= 0 ? 4 : rgb_channel_count;
1371 channel_buffer[1] = channel_buffer[0];
1372 channel_buffer[2] = channel_buffer[0];
1375 for (
c = 0;
c < channel_count;
c++) {
1376 int plane =
s->desc->comp[
c].plane;
1377 ptr = p->
data[plane] + window_ymin * p->
linesize[plane] + (window_xmin * 4);
1379 for (
i = 0;
i < ysize;
i++, ptr += p->
linesize[plane]) {
1383 src = channel_buffer[
c];
1387 memset(ptr_x, 0, bxmin);
1388 ptr_x += window_xoffset;
1395 if (trc_func &&
c < 3) {
1396 for (x = 0; x < xsize; x++) {
1397 t.
i = bytestream_get_le32(&
src);
1398 t.
f = trc_func(t.
f);
1401 }
else if (one_gamma != 1.
f) {
1402 for (x = 0; x < xsize; x++) {
1403 t.
i = bytestream_get_le32(&
src);
1404 if (t.
f > 0.0f &&
c < 3)
1405 t.
f =
powf(t.
f, one_gamma);
1409 for (x = 0; x < xsize; x++) {
1410 t.
i = bytestream_get_le32(&
src);
1416 if (
c < 3 || !trc_func) {
1417 for (x = 0; x < xsize; x++) {
1418 *ptr_x++ =
s->gamma_table[bytestream_get_le16(&
src)];
1421 for (x = 0; x < xsize; x++) {
1429 memset(ptr_x, 0, axmax);
1430 channel_buffer[
c] +=
td->channel_line_size;
1436 ptr = p->
data[0] + window_ymin * p->
linesize[0] + (window_xmin *
s->desc->nb_components * 2);
1438 for (
i = 0;
i < ysize;
i++, ptr += p->
linesize[0]) {
1441 const uint8_t *
rgb[3];
1444 for (
c = 0;
c < rgb_channel_count;
c++) {
1445 rgb[
c] = channel_buffer[
c];
1448 if (channel_buffer[3])
1449 a = channel_buffer[3];
1451 ptr_x = (uint16_t *) ptr;
1454 memset(ptr_x, 0, bxmin);
1455 ptr_x += window_xoffset *
s->desc->nb_components;
1457 for (x = 0; x < xsize; x++) {
1458 for (
c = 0;
c < rgb_channel_count;
c++) {
1459 *ptr_x++ = bytestream_get_le32(&
rgb[
c]) >> 16;
1462 if (channel_buffer[3])
1463 *ptr_x++ = bytestream_get_le32(&
a) >> 16;
1467 memset(ptr_x, 0, axmax);
1469 channel_buffer[0] +=
td->channel_line_size;
1470 channel_buffer[1] +=
td->channel_line_size;
1471 channel_buffer[2] +=
td->channel_line_size;
1472 if (channel_buffer[3])
1473 channel_buffer[3] +=
td->channel_line_size;
1485 if (!bytestream2_peek_byte(gb))
1489 for (
int i = 0;
i < 2;
i++)
1490 while (bytestream2_get_byte(gb) != 0);
1510 const char *value_name,
1511 const char *value_type,
1512 unsigned int minimum_length)
1518 !strcmp(gb->
buffer, value_name)) {
1520 gb->
buffer += strlen(value_name) + 1;
1521 if (!strcmp(gb->
buffer, value_type)) {
1522 gb->
buffer += strlen(value_type) + 1;
1523 var_size = bytestream2_get_le32(gb);
1529 gb->
buffer -= strlen(value_name) + 1;
1531 "Unknown data type %s for header variable %s.\n",
1532 value_type, value_name);
1544 int layer_match = 0;
1546 int dup_channels = 0;
1548 s->current_channel_offset = 0;
1555 s->channel_offsets[0] = -1;
1556 s->channel_offsets[1] = -1;
1557 s->channel_offsets[2] = -1;
1558 s->channel_offsets[3] = -1;
1564 s->tile_attr.xSize = -1;
1565 s->tile_attr.ySize = -1;
1567 s->is_multipart = 0;
1569 s->current_part = 0;
1576 magic_number = bytestream2_get_le32(gb);
1577 if (magic_number != 20000630) {
1584 version = bytestream2_get_byte(gb);
1590 flags = bytestream2_get_le24(gb);
1595 s->is_multipart = 1;
1605 while (
s->is_multipart &&
s->current_part <
s->selected_part &&
1607 if (bytestream2_peek_byte(gb)) {
1611 if (!bytestream2_peek_byte(gb))
1618 if (!bytestream2_peek_byte(gb)) {
1619 if (!
s->is_multipart)
1622 if (
s->current_part ==
s->selected_part) {
1624 if (bytestream2_peek_byte(gb)) {
1628 if (!bytestream2_peek_byte(gb))
1633 if (!bytestream2_peek_byte(gb))
1639 "chlist", 38)) >= 0) {
1651 int channel_index = -1;
1654 if (strcmp(
s->layer,
"") != 0) {
1655 if (strncmp(ch_gb.
buffer,
s->layer, strlen(
s->layer)) == 0) {
1658 "Channel match layer : %s.\n", ch_gb.
buffer);
1659 ch_gb.
buffer += strlen(
s->layer);
1660 if (*ch_gb.
buffer ==
'.')
1665 "Channel doesn't match layer : %s.\n", ch_gb.
buffer);
1693 "Unsupported channel %.256s.\n", ch_gb.
buffer);
1699 bytestream2_get_byte(&ch_gb))
1708 current_pixel_type = bytestream2_get_le32(&ch_gb);
1711 current_pixel_type);
1717 xsub = bytestream2_get_le32(&ch_gb);
1718 ysub = bytestream2_get_le32(&ch_gb);
1720 if (xsub != 1 || ysub != 1) {
1722 "Subsampling %dx%d",
1728 if (channel_index >= 0 &&
s->channel_offsets[channel_index] == -1) {
1730 s->pixel_type != current_pixel_type) {
1732 "RGB channels not of the same depth.\n");
1736 s->pixel_type = current_pixel_type;
1737 s->channel_offsets[channel_index] =
s->current_channel_offset;
1738 }
else if (channel_index >= 0) {
1740 "Multiple channels with index %d.\n", channel_index);
1741 if (++dup_channels > 10) {
1753 channel = &
s->channels[
s->nb_channels - 1];
1754 channel->pixel_type = current_pixel_type;
1758 if (current_pixel_type ==
EXR_HALF) {
1759 s->current_channel_offset += 2;
1761 s->current_channel_offset += 4;
1768 if (
FFMIN3(
s->channel_offsets[0],
1769 s->channel_offsets[1],
1770 s->channel_offsets[2]) < 0) {
1771 if (
s->channel_offsets[0] < 0)
1773 if (
s->channel_offsets[1] < 0)
1775 if (
s->channel_offsets[2] < 0)
1787 int xmin, ymin, xmax, ymax;
1793 xmin = bytestream2_get_le32(gb);
1794 ymin = bytestream2_get_le32(gb);
1795 xmax = bytestream2_get_le32(gb);
1796 ymax = bytestream2_get_le32(gb);
1798 if (xmin > xmax || ymin > ymax ||
1799 ymax == INT_MAX || xmax == INT_MAX ||
1800 (
unsigned)xmax - xmin >= INT_MAX ||
1801 (
unsigned)ymax - ymin >= INT_MAX) {
1809 s->xdelta = (
s->xmax -
s->xmin) + 1;
1810 s->ydelta = (
s->ymax -
s->ymin) + 1;
1814 "box2i", 34)) >= 0) {
1822 sx = bytestream2_get_le32(gb);
1823 sy = bytestream2_get_le32(gb);
1824 dx = bytestream2_get_le32(gb);
1825 dy = bytestream2_get_le32(gb);
1827 s->w = (unsigned)dx - sx + 1;
1828 s->h = (unsigned)dy - sy + 1;
1832 "lineOrder", 25)) >= 0) {
1839 line_order = bytestream2_get_byte(gb);
1841 if (line_order > 2) {
1849 "float", 31)) >= 0) {
1855 s->sar = bytestream2_get_le32(gb);
1859 "compression", 29)) >= 0) {
1866 s->compression = bytestream2_get_byte(gb);
1870 "Found more than one compression attribute.\n");
1875 "tiledesc", 22)) >= 0) {
1880 "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1882 s->tile_attr.xSize = bytestream2_get_le32(gb);
1883 s->tile_attr.ySize = bytestream2_get_le32(gb);
1885 tileLevel = bytestream2_get_byte(gb);
1886 s->tile_attr.level_mode = tileLevel & 0x0f;
1887 s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1891 s->tile_attr.level_mode);
1898 s->tile_attr.level_round);
1905 "string", 1)) >= 0) {
1906 uint8_t
key[256] = { 0 };
1913 "rational", 33)) >= 0) {
1919 s->avctx->framerate.num = bytestream2_get_le32(gb);
1920 s->avctx->framerate.den = bytestream2_get_le32(gb);
1926 s->chunk_count = bytestream2_get_le32(gb);
1930 "string", 16)) >= 0) {
1931 uint8_t
key[256] = { 0 };
1934 if (strncmp(
"scanlineimage",
key, var_size) &&
1935 strncmp(
"tiledimage",
key, var_size)) {
1942 "preview", 16)) >= 0) {
1943 uint32_t pw = bytestream2_get_le32(gb);
1944 uint32_t
ph = bytestream2_get_le32(gb);
1945 uint64_t psize = pw *
ph;
1946 if (psize > INT64_MAX / 4) {
1971 uint8_t
name[256] = { 0 };
1972 uint8_t
type[256] = { 0 };
1973 uint8_t
value[8192] = { 0 };
1977 bytestream2_peek_byte(gb) &&
i < 255) {
1978 name[
i++] = bytestream2_get_byte(gb);
1984 bytestream2_peek_byte(gb) &&
i < 255) {
1985 type[
i++] = bytestream2_get_byte(gb);
1988 size = bytestream2_get_le32(gb);
1993 if (!strcmp(
type,
"string"))
2005 if (
s->tile_attr.xSize < 1 ||
s->tile_attr.ySize < 1) {
2035 int i, y,
ret, ymax;
2039 uint64_t start_offset_table;
2040 uint64_t start_next_scanline;
2049 s->current_channel_offset *= 2;
2050 for (
int i = 0;
i < 4;
i++)
2051 s->channel_offsets[
i] *= 2;
2054 switch (
s->pixel_type) {
2057 if (
s->channel_offsets[3] >= 0) {
2073 if (
s->channel_offsets[3] >= 0) {
2094 else if (
s->gamma > 0.9999f &&
s->gamma < 1.0001f)
2097 switch (
s->compression) {
2101 s->scan_lines_per_block = 1;
2105 s->scan_lines_per_block = 16;
2111 s->scan_lines_per_block = 32;
2114 s->scan_lines_per_block = 256;
2123 if (
s->xmin >
s->xmax ||
s->ymin >
s->ymax ||
2124 s->ydelta == 0xFFFFFFFF ||
s->xdelta == 0xFFFFFFFF) {
2142 planes =
s->desc->nb_components;
2143 out_line_size = avctx->
width * 4;
2146 out_line_size = avctx->
width * 2 *
s->desc->nb_components;
2150 nb_blocks = ((
s->xdelta +
s->tile_attr.xSize - 1) /
s->tile_attr.xSize) *
2151 ((
s->ydelta +
s->tile_attr.ySize - 1) /
s->tile_attr.ySize);
2153 nb_blocks = (
s->ydelta +
s->scan_lines_per_block - 1) /
2154 s->scan_lines_per_block;
2164 if (!
s->is_tile && bytestream2_peek_le64(gb) == 0) {
2170 if (!
s->offset_table)
2174 start_next_scanline = start_offset_table + nb_blocks * 8;
2177 for (y = 0; y < nb_blocks; y++) {
2179 bytestream2_put_le64(&offset_table_writer, start_next_scanline);
2183 start_next_scanline += (bytestream2_get_le32(gb) + 8);
2189 s->buf = avpkt->
data;
2190 s->buf_size = avpkt->
size;
2194 ptr = picture->
data[
i];
2195 for (y = 0; y <
FFMIN(
s->ymin,
s->h); y++) {
2196 memset(ptr, 0, out_line_size);
2201 s->picture = picture;
2205 ymax =
FFMAX(0,
s->ymax + 1);
2207 if (ymax < avctx->
height)
2210 for (y = ymax; y < avctx->
height; y++) {
2211 memset(ptr, 0, out_line_size);
2227 float one_gamma = 1.0
f /
s->gamma;
2242 for (
i = 0;
i < 65536; ++
i) {
2244 t.
f = trc_func(t.
f);
2245 s->gamma_table[
i] = t;
2248 if (one_gamma > 0.9999
f && one_gamma < 1.0001
f) {
2249 for (
i = 0;
i < 65536; ++
i) {
2253 for (
i = 0;
i < 65536; ++
i) {
2257 s->gamma_table[
i] = t;
2259 t.
f =
powf(t.
f, one_gamma);
2260 s->gamma_table[
i] = t;
2268 if (!
s->thread_data)
2300 #define OFFSET(x) offsetof(EXRContext, x)
2301 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2303 {
"layer",
"Set the decoding layer",
OFFSET(layer),
2305 {
"part",
"Set the decoding part",
OFFSET(selected_part),
2307 {
"gamma",
"Set the float gamma value when decoding",
OFFSET(gamma),
2311 {
"apply_trc",
"color transfer characteristics to apply to EXR linear input",
OFFSET(apply_trc_type),
2313 {
"bt709",
"BT.709", 0,
2315 {
"gamma",
"gamma", 0,
2317 {
"gamma22",
"BT.470 M", 0,
2319 {
"gamma28",
"BT.470 BG", 0,
2321 {
"smpte170m",
"SMPTE 170 M", 0,
2323 {
"smpte240m",
"SMPTE 240 M", 0,
2325 {
"linear",
"Linear", 0,
2329 {
"log_sqrt",
"Log square root", 0,
2331 {
"iec61966_2_4",
"IEC 61966-2-4", 0,
2333 {
"bt1361",
"BT.1361", 0,
2335 {
"iec61966_2_1",
"IEC 61966-2-1", 0,
2337 {
"bt2020_10bit",
"BT.2020 - 10 bit", 0,
2339 {
"bt2020_12bit",
"BT.2020 - 12 bit", 0,
2341 {
"smpte2084",
"SMPTE ST 2084", 0,
2343 {
"smpte428_1",
"SMPTE ST 428-1", 0,
enum ExrTileLevelRound level_round
#define AV_LOG_WARNING
Something somehow does not look correct.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option name
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
AVColorTransferCharacteristic
Color Transfer Characteristic.
#define u(width, name, range_min, range_max)
uint8_t * uncompressed_data
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
@ AVCOL_TRC_LINEAR
"Linear transfer characteristics"
static int decode_header(EXRContext *s, AVFrame *frame)
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
static int get_bits_count(const GetBitContext *s)
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
static int decode_frame(AVCodecContext *avctx, AVFrame *picture, int *got_frame, AVPacket *avpkt)
static int FUNC() ph(CodedBitstreamContext *ctx, RWContext *rw, H266RawPH *current)
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
This structure describes decoded (raw) audio or video data.
@ AVCOL_TRC_NB
Not part of ABI.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
static av_cold int decode_init(AVCodecContext *avctx)
static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
@ AVCOL_TRC_BT2020_12
ITU-R BT2020 for 12-bit system.
static int piz_uncompress(const EXRContext *s, const uint8_t *src, int ssize, int dsize, EXRThreadData *td)
static const AVOption options[]
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
static int b44_uncompress(const EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static int rle(uint8_t *dst, const uint8_t *src, int compressed_size, int uncompressed_size)
static void convert(float y, float u, float v, float *b, float *g, float *r)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have so the codec calls ff_thread_report set FF_CODEC_CAP_ALLOCATE_PROGRESS in FFCodec caps_internal and use ff_thread_get_buffer() to allocate frames. Otherwise decode directly into the user-supplied frames. Call ff_thread_report_progress() after some part of the current picture has decoded. A good place to put this is where draw_horiz_band() is called - add this if it isn 't called anywhere
av_csp_trc_function av_csp_trc_func_from_id(enum AVColorTransferCharacteristic trc)
Determine the function needed to apply the given AVColorTransferCharacteristic to linear input.
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
EXRTileAttribute tile_attr
AVCodec p
The public AVCodec.
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
@ AVCOL_TRC_IEC61966_2_1
IEC 61966-2-1 (sRGB or sYCC)
enum AVDiscard skip_frame
Skip decoding for selected frames.
static av_always_inline float av_int2float(uint32_t i)
Reinterpret a 32-bit integer as a float.
int thread_count
thread count is used to decide how many independent tasks should be passed to execute()
@ AVCOL_TRC_GAMMA28
also ITU-R BT470BG
static double val(void *priv, double ch)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
static av_always_inline float scale(float x, float s)
#define AV_PIX_FMT_GRAY16
@ AVCOL_TRC_LOG_SQRT
"Logarithmic transfer characteristic (100 * Sqrt(10) : 1 range)"
static __device__ float fabsf(float a)
const FFCodec ff_exr_decoder
static int huf_build_dec_table(const EXRContext *s, EXRThreadData *td, int im, int iM)
@ AVCOL_TRC_GAMMA22
also ITU-R BT470M / ITU-R BT1700 625 PAL & SECAM
int av_image_check_size2(unsigned int w, unsigned int h, int64_t max_pixels, enum AVPixelFormat pix_fmt, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of a plane of an image with...
static float to_linear(float x, float scale)
static av_cold int decode_end(AVCodecContext *avctx)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static av_always_inline void bytestream2_init_writer(PutByteContext *p, uint8_t *buf, int buf_size)
enum ExrCompr compression
#define FF_CODEC_DECODE_CB(func)
static int check_header_variable(EXRContext *s, const char *value_name, const char *value_type, unsigned int minimum_length)
Check if the variable name corresponds to its data type.
static void huf_canonical_code_table(uint64_t *freq)
@ AVCOL_TRC_BT1361_ECG
ITU-R BT1361 Extended Colour Gamut.
int current_channel_offset
int(* init)(AVBSFContext *ctx)
static int decode_block(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
enum ExrPixelType pixel_type
int64_t max_pixels
The number of pixels per image to maximally accept.
#define SHORTEST_LONG_RUN
static void skip_header_chunk(EXRContext *s)
#define AV_PIX_FMT_GRAYF32
#define CODEC_LONG_NAME(str)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
const AVPixFmtDescriptor * desc
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
@ AVDISCARD_ALL
discard all
#define av_realloc_f(p, o, n)
#define AV_PIX_FMT_RGBA64
#define LIBAVUTIL_VERSION_INT
Describe the class of an AVClass context structure.
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
static int bias(int x, int c)
#define LONG_ZEROCODE_RUN
#define SHORT_ZEROCODE_RUN
@ AVCOL_TRC_IEC61966_2_4
IEC 61966-2-4.
const char * av_default_item_name(void *ptr)
Return the context name.
@ AV_PICTURE_TYPE_I
Intra.
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
static av_always_inline unsigned int bytestream2_get_buffer(GetByteContext *g, uint8_t *dst, unsigned int size)
av_cold void ff_exrdsp_init(ExrDSPContext *c)
@ AVCOL_TRC_BT2020_10
ITU-R BT2020 for 10-bit system.
static void unpack_14(const uint8_t b[14], uint16_t s[16])
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
static av_always_inline int bytestream2_tell(GetByteContext *g)
enum ExrPixelType pixel_type
enum ExrTileLevelMode level_mode
EXRThreadData * thread_data
enum AVPictureType pict_type
Picture type of the frame.
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
static void wav_decode(uint16_t *in, int nx, int ox, int ny, int oy, uint16_t mx)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
static int dwa_uncompress(const EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static int shift(int a, int b)
@ AVCOL_TRC_LOG
"Logarithmic transfer characteristic (100:1 range)"
#define bytestream2_get_ne16
#define AV_PIX_FMT_GBRPF32
#define FF_CODEC_CAP_SKIP_FRAME_FILL_PARAM
The decoder extracts and fills its parameters even if the frame is skipped due to the skip_frame sett...
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static int ac_uncompress(const EXRContext *s, GetByteContext *gb, float *block)
static av_always_inline int diff(const struct color_info *a, const struct color_info *b, const int trans_thresh)
static void idct_1d(float *blk, int step)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
void av_dict_free(AVDictionary **pm)
Free all the memory allocated for an AVDictionary struct and all keys and values.
enum AVColorTransferCharacteristic apply_trc_type
int ff_vlc_init_sparse(VLC *vlc, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size, int flags)
Build VLC decoding tables suitable for use with get_vlc2().
static void unpack_3(const uint8_t b[3], uint16_t s[16])
#define AV_LOG_INFO
Standard information.
@ AVCOL_TRC_BT709
also ITU-R BT1361
static void dct_inverse(float *block)
double(* av_csp_trc_function)(double)
Function pointer representing a double -> double transfer function that performs an EOTF transfer inv...
Half2FloatTables h2f_tables
#define i(width, name, range_min, range_max)
#define av_malloc_array(a, b)
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
static const struct @363 planes[]
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
AVRational av_d2q(double d, int max)
Convert a double precision floating point number to a rational.
const char * name
Name of the codec implementation.
static int huf_unpack_enc_table(GetByteContext *gb, int32_t im, int32_t iM, uint64_t *freq)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
void * av_calloc(size_t nmemb, size_t size)
const uint8_t ff_zigzag_direct[64]
void ff_vlc_free(VLC *vlc)
static int huf_decode(VLC *vlc, GetByteContext *gb, int nbits, int run_sym, int no, uint16_t *out)
static uint32_t half2float(uint16_t h, const Half2FloatTables *t)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
void ff_init_half2float_tables(Half2FloatTables *t)
static int rle_uncompress(const EXRContext *ctx, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
union av_intfloat32 gamma_table[65536]
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
main external API structure.
static int pxr24_uncompress(const EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
#define AV_PIX_FMT_GBRAPF32
AVDictionary * metadata
metadata.
@ AVCOL_TRC_SMPTE170M
also ITU-R BT601-6 525 or 625 / ITU-R BT1358 525 or 625 / ITU-R BT1700 NTSC
#define avpriv_request_sample(...)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static int huf_uncompress(const EXRContext *s, EXRThreadData *td, GetByteContext *gb, uint16_t *dst, int dst_size)
static const int16_t alpha[]
This structure stores compressed data.
int av_dict_set(AVDictionary **pm, const char *key, const char *value, int flags)
Set the given entry in *pm, overwriting an existing entry.
static int zip_uncompress(const EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
int width
picture width / height.
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static const AVClass exr_class
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
static void BS_FUNC() skip(BSCTX *bc, unsigned int n)
Skip n bits in the buffer.
The official guide to swscale for confused that consecutive non overlapping rectangles of slice_bottom special converter These generally are unscaled converters of common like for each output line the vertical scaler pulls lines from a ring buffer When the ring buffer does not contain the wanted line
void * av_realloc(void *ptr, size_t size)
Allocate, reallocate, or free a block of memory.