Go to the documentation of this file.
29 #define LONG_BITSTREAM_READER
31 #include "config_components.h"
48 #define ALPHA_SHIFT_16_TO_10(alpha_val) (alpha_val >> 6)
49 #define ALPHA_SHIFT_8_TO_10(alpha_val) ((alpha_val << 2) | (alpha_val >> 6))
50 #define ALPHA_SHIFT_16_TO_12(alpha_val) (alpha_val >> 4)
51 #define ALPHA_SHIFT_8_TO_12(alpha_val) ((alpha_val << 4) | (alpha_val >> 4))
54 const int num_bits,
const int decode_precision) {
55 const int mask = (1 << num_bits) - 1;
56 int i, idx,
val, alpha_val;
72 alpha_val = (alpha_val +
val) &
mask;
74 if (decode_precision == 10) {
80 if (decode_precision == 10) {
86 if (idx >= num_coeffs)
92 if (idx +
val > num_coeffs)
93 val = num_coeffs - idx;
95 for (
i = 0;
i <
val;
i++) {
96 if (decode_precision == 10) {
103 for (
i = 0;
i <
val;
i++) {
104 if (decode_precision == 10) {
111 }
while (idx < num_coeffs);
117 if (num_bits == 16) {
127 if (num_bits == 16) {
138 uint8_t idct_permutation[64];
143 case MKTAG(
'a',
'p',
'c',
'o'):
146 case MKTAG(
'a',
'p',
'c',
's'):
149 case MKTAG(
'a',
'p',
'c',
'n'):
152 case MKTAG(
'a',
'p',
'c',
'h'):
155 case MKTAG(
'a',
'p',
'4',
'h'):
159 case MKTAG(
'a',
'p',
'4',
'x'):
169 av_log(avctx,
AV_LOG_DEBUG,
"Auto bitdepth precision. Use 10b decoding based on codec tag.\n");
171 av_log(avctx,
AV_LOG_DEBUG,
"Auto bitdepth precision. Use 12b decoding based on codec tag.\n");
182 ctx->prodsp.idct_permutation_type);
209 ff_dlog(avctx,
"header size %d\n", hdr_size);
210 if (hdr_size > data_size) {
234 ctx->frame_type = (buf[12] >> 2) & 3;
235 ctx->alpha_info = buf[17] & 0xf;
237 if (
ctx->alpha_info > 2) {
243 ff_dlog(avctx,
"frame type %d\n",
ctx->frame_type);
245 if (
ctx->frame_type == 0) {
246 ctx->scan =
ctx->progressive_scan;
248 ctx->scan =
ctx->interlaced_scan;
250 if (
ctx->frame_type == 1)
254 if (
ctx->alpha_info) {
269 #define HWACCEL_MAX (CONFIG_PRORES_VIDEOTOOLBOX_HWACCEL)
275 #if CONFIG_PRORES_VIDEOTOOLBOX_HWACCEL
278 *fmtp++ =
ctx->pix_fmt;
287 ctx->frame->color_primaries = buf[14];
288 ctx->frame->color_trc = buf[15];
289 ctx->frame->colorspace = buf[16];
297 if(buf + data_size - ptr < 64) {
304 memset(
ctx->qmat_luma, 4, 64);
308 if(buf + data_size - ptr < 64) {
314 memcpy(
ctx->qmat_chroma,
ctx->qmat_luma, 64);
323 int i, hdr_size, slice_count;
324 unsigned pic_data_size;
325 int log2_slice_mb_width, log2_slice_mb_height;
326 int slice_mb_count, mb_x, mb_y;
327 const uint8_t *data_ptr, *index_ptr;
329 hdr_size = buf[0] >> 3;
330 if (hdr_size < 8 || hdr_size > buf_size) {
335 pic_data_size =
AV_RB32(buf + 1);
336 if (pic_data_size > buf_size) {
341 log2_slice_mb_width = buf[7] >> 4;
342 log2_slice_mb_height = buf[7] & 0xF;
343 if (log2_slice_mb_width > 3 || log2_slice_mb_height) {
345 1 << log2_slice_mb_width, 1 << log2_slice_mb_height);
349 ctx->mb_width = (avctx->
width + 15) >> 4;
351 ctx->mb_height = (avctx->
height + 31) >> 5;
353 ctx->mb_height = (avctx->
height + 15) >> 4;
357 slice_count =
ctx->mb_height * ((
ctx->mb_width >> log2_slice_mb_width) +
360 if (
ctx->slice_count != slice_count || !
ctx->slices) {
362 ctx->slice_count = 0;
366 ctx->slice_count = slice_count;
372 if (hdr_size + slice_count*2 > buf_size) {
378 index_ptr = buf + hdr_size;
379 data_ptr = index_ptr + slice_count*2;
381 slice_mb_count = 1 << log2_slice_mb_width;
385 for (
i = 0;
i < slice_count;
i++) {
388 slice->
data = data_ptr;
389 data_ptr +=
AV_RB16(index_ptr +
i*2);
391 while (
ctx->mb_width - mb_x < slice_mb_count)
392 slice_mb_count >>= 1;
404 mb_x += slice_mb_count;
405 if (mb_x ==
ctx->mb_width) {
406 slice_mb_count = 1 << log2_slice_mb_width;
410 if (data_ptr > buf + buf_size) {
416 if (mb_x || mb_y !=
ctx->mb_height) {
418 mb_y,
ctx->mb_height);
422 return pic_data_size;
425 #define DECODE_CODEWORD(val, codebook, SKIP) \
427 unsigned int rice_order, exp_order, switch_bits; \
428 unsigned int q, buf, bits; \
430 UPDATE_CACHE(re, gb); \
431 buf = GET_CACHE(re, gb); \
434 switch_bits = codebook & 3; \
435 rice_order = codebook >> 5; \
436 exp_order = (codebook >> 2) & 7; \
438 q = 31 - av_log2(buf); \
440 if (q > switch_bits) { \
441 bits = exp_order - switch_bits + (q<<1); \
442 if (bits > FFMIN(MIN_CACHE_BITS, 31)) \
443 return AVERROR_INVALIDDATA; \
444 val = SHOW_UBITS(re, gb, bits) - (1 << exp_order) + \
445 ((switch_bits + 1) << rice_order); \
446 SKIP(re, gb, bits); \
447 } else if (rice_order) { \
448 SKIP_BITS(re, gb, q+1); \
449 val = (q << rice_order) + SHOW_UBITS(re, gb, rice_order); \
450 SKIP(re, gb, rice_order); \
457 #define TOSIGNED(x) (((x) >> 1) ^ (-((x) & 1)))
459 #define FIRST_DC_CB 0xB8
461 static const uint8_t
dc_codebook[7] = { 0x04, 0x28, 0x28, 0x4D, 0x4D, 0x70, 0x70};
464 int blocks_per_slice)
479 for (
i = 1;
i < blocks_per_slice;
i++,
out += 64) {
483 prev_dc += (((
code + 1) >> 1) ^ sign) - sign;
491 static const uint8_t
run_to_cb[16] = { 0x06, 0x06, 0x05, 0x05, 0x04, 0x29, 0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x4C };
492 static const uint8_t
lev_to_cb[10] = { 0x04, 0x0A, 0x05, 0x06, 0x04, 0x28, 0x28, 0x28, 0x28, 0x4C };
495 int16_t *
out,
int blocks_per_slice)
498 int block_mask, sign;
501 int log2_block_count =
av_log2(blocks_per_slice);
508 max_coeffs = 64 << log2_block_count;
509 block_mask = blocks_per_slice - 1;
511 for (
pos = block_mask;;) {
518 if (
pos >= max_coeffs) {
526 i =
pos >> log2_block_count;
530 out[((
pos & block_mask) << 6) +
ctx->scan[
i]] = ((
level ^ sign) - sign);
538 uint16_t *dst,
int dst_stride,
539 const uint8_t *buf,
unsigned buf_size,
546 int i, blocks_per_slice = slice->
mb_count<<2;
549 for (
i = 0;
i < blocks_per_slice;
i++)
550 ctx->bdsp.clear_block(blocks+(
i<<6));
561 ctx->prodsp.idct_put(dst, dst_stride,
block+(0<<6), qmat);
562 ctx->prodsp.idct_put(dst +8, dst_stride,
block+(1<<6), qmat);
563 ctx->prodsp.idct_put(dst+4*dst_stride , dst_stride,
block+(2<<6), qmat);
564 ctx->prodsp.idct_put(dst+4*dst_stride+8, dst_stride,
block+(3<<6), qmat);
572 uint16_t *dst,
int dst_stride,
573 const uint8_t *buf,
unsigned buf_size,
574 const int16_t *qmat,
int log2_blocks_per_mb)
580 int i, j, blocks_per_slice = slice->
mb_count << log2_blocks_per_mb;
583 for (
i = 0;
i < blocks_per_slice;
i++)
584 ctx->bdsp.clear_block(blocks+(
i<<6));
595 for (j = 0; j < log2_blocks_per_mb; j++) {
596 ctx->prodsp.idct_put(dst, dst_stride,
block+(0<<6), qmat);
597 ctx->prodsp.idct_put(dst+4*dst_stride, dst_stride,
block+(1<<6), qmat);
609 uint16_t *dst,
int dst_stride,
610 const uint8_t *buf,
int buf_size,
611 int blocks_per_slice)
618 for (
i = 0;
i < blocks_per_slice<<2;
i++)
619 ctx->bdsp.clear_block(blocks+(
i<<6));
623 if (
ctx->alpha_info == 2) {
624 ctx->unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 16);
626 ctx->unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 8);
631 for (
i = 0;
i < 16;
i++) {
632 memcpy(dst,
block, 16 * blocks_per_slice *
sizeof(*dst));
633 dst += dst_stride >> 1;
634 block += 16 * blocks_per_slice;
642 const uint8_t *buf = slice->
data;
644 int i, hdr_size, qscale, log2_chroma_blocks_per_mb;
645 int luma_stride, chroma_stride;
646 int y_data_size, u_data_size, v_data_size, a_data_size,
offset;
647 uint8_t *dest_y, *dest_u, *dest_v;
652 uint16_t val_no_chroma;
659 hdr_size = buf[0] >> 3;
660 qscale =
av_clip(buf[1], 1, 224);
661 qscale = qscale > 128 ? qscale - 96 << 2: qscale;
662 y_data_size =
AV_RB16(buf + 2);
663 u_data_size =
AV_RB16(buf + 4);
664 v_data_size = slice->
data_size - y_data_size - u_data_size - hdr_size;
665 if (hdr_size > 7) v_data_size =
AV_RB16(buf + 6);
666 a_data_size = slice->
data_size - y_data_size - u_data_size -
667 v_data_size - hdr_size;
669 if (y_data_size < 0 || u_data_size < 0 || v_data_size < 0
670 || hdr_size+y_data_size+u_data_size+v_data_size > slice->
data_size){
677 for (
i = 0;
i < 64;
i++) {
678 qmat_luma_scaled [
i] =
ctx->qmat_luma [
i] * qscale;
679 qmat_chroma_scaled[
i] =
ctx->qmat_chroma[
i] * qscale;
682 if (
ctx->frame_type == 0) {
686 luma_stride = pic->
linesize[0] << 1;
687 chroma_stride = pic->
linesize[1] << 1;
693 log2_chroma_blocks_per_mb = 2;
696 log2_chroma_blocks_per_mb = 1;
701 dest_u = pic->
data[1] + (slice->
mb_y << 4) * chroma_stride + (slice->
mb_x << mb_x_shift);
702 dest_v = pic->
data[2] + (slice->
mb_y << 4) * chroma_stride + (slice->
mb_x << mb_x_shift);
712 buf, y_data_size, qmat_luma_scaled);
718 buf + y_data_size, u_data_size,
719 qmat_chroma_scaled, log2_chroma_blocks_per_mb);
724 buf + y_data_size + u_data_size, v_data_size,
725 qmat_chroma_scaled, log2_chroma_blocks_per_mb);
730 size_t mb_max_x = slice->
mb_count << (mb_x_shift - 1);
735 val_no_chroma = 511 * 4;
737 for (
i = 0;
i < 16; ++
i)
738 for (j = 0; j < mb_max_x; ++j) {
739 *(uint16_t*)(dest_u + (
i * chroma_stride) + (j << 1)) = val_no_chroma;
740 *(uint16_t*)(dest_v + (
i * chroma_stride) + (j << 1)) = val_no_chroma;
745 if (
ctx->alpha_info && pic->
data[3] && a_data_size) {
748 buf + y_data_size + u_data_size + v_data_size,
764 for (
i = 0;
i <
ctx->slice_count;
i++)
769 if (error < ctx->slice_count)
772 return ctx->slices[0].ret;
779 const uint8_t *buf = avpkt->
data;
780 int buf_size = avpkt->
size;
781 int frame_hdr_size, pic_size,
ret;
791 ctx->first_field = 1;
797 if (frame_hdr_size < 0)
798 return frame_hdr_size;
800 buf += frame_hdr_size;
801 buf_size -= frame_hdr_size;
834 buf_size -= pic_size;
836 if (
ctx->frame_type && buf_size > 0 &&
ctx->first_field) {
837 ctx->first_field = 0;
881 #if CONFIG_PRORES_VIDEOTOOLBOX_HWACCEL
static void error(const char *err)
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
#define AV_LOG_WARNING
Something somehow does not look correct.
#define DECODE_CODEWORD(val, codebook, SKIP)
AVPixelFormat
Pixel format.
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Select the (possibly hardware accelerated) pixel format.
const AVProfile ff_prores_profiles[]
This structure describes decoded (raw) audio or video data.
#define UPDATE_CACHE(name, gb)
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
#define AV_PIX_FMT_YUVA422P10
const uint8_t ff_prores_progressive_scan[64]
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have so the codec calls ff_thread_report set FF_CODEC_CAP_ALLOCATE_PROGRESS in FFCodec caps_internal and use ff_thread_get_buffer() to allocate frames. Otherwise decode directly into the user-supplied frames. Call ff_thread_report_progress() after some part of the current picture has decoded. A good place to put this is where draw_horiz_band() is called - add this if it isn 't called anywhere
#define AV_PROFILE_PRORES_STANDARD
#define AV_FRAME_FLAG_TOP_FIELD_FIRST
A flag to mark frames where the top field is displayed first if the content is interlaced.
av_cold void ff_permute_scantable(uint8_t dst[64], const uint8_t src[64], const uint8_t permutation[64])
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
#define AV_PROFILE_PRORES_HQ
AVCodec p
The public AVCodec.
enum AVPixelFormat pix_fmt
int flags
AV_CODEC_FLAG_*.
int(* end_frame)(AVCodecContext *avctx)
Called at the end of each frame or field picture.
static double val(void *priv, double ch)
#define ALPHA_SHIFT_8_TO_10(alpha_val)
#define AV_PIX_FMT_YUV444P10
int(* start_frame)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Called at the beginning of each frame or field picture.
static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs, const int num_bits, const int decode_precision)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
const FFCodec ff_prores_decoder
#define AV_PROFILE_UNKNOWN
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
static const uint16_t mask[17]
#define CLOSE_READER(name, gb)
static int decode_picture_header(AVCodecContext *avctx, const uint8_t *buf, const int buf_size)
#define FF_CODEC_DECODE_CB(func)
av_cold void ff_blockdsp_init(BlockDSPContext *c)
int flags
Flags modifying the (de)muxer behaviour.
static enum AVPixelFormat pix_fmt
static int decode_picture(AVCodecContext *avctx)
#define SHOW_SBITS(name, gb, num)
int(* init)(AVBSFContext *ctx)
#define LOCAL_ALIGNED_16(t, v,...)
static enum AVPixelFormat pix_fmts[]
#define AV_PIX_FMT_YUVA444P12
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define SKIP_BITS(name, gb, num)
const uint8_t ff_prores_interlaced_scan[64]
#define CODEC_LONG_NAME(str)
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
av_cold int ff_proresdsp_init(ProresDSPContext *dsp, int bits_per_raw_sample)
#define FF_DECODE_ERROR_INVALID_BITSTREAM
#define LOCAL_ALIGNED_32(t, v,...)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
static av_always_inline int decode_ac_coeffs(AVCodecContext *avctx, GetBitContext *gb, int16_t *out, int blocks_per_slice)
@ AV_PICTURE_TYPE_I
Intra.
static unsigned int get_bits1(GetBitContext *s)
static const uint8_t run_to_cb[16]
#define LAST_SKIP_BITS(name, gb, num)
#define UPDATE_THREAD_CONTEXT(func)
#define AV_PIX_FMT_YUV422P10
static int decode_slice_chroma(AVCodecContext *avctx, SliceContext *slice, uint16_t *dst, int dst_stride, const uint8_t *buf, unsigned buf_size, const int16_t *qmat, int log2_blocks_per_mb)
#define AV_PROFILE_PRORES_LT
static int decode_slice_luma(AVCodecContext *avctx, SliceContext *slice, uint16_t *dst, int dst_stride, const uint8_t *buf, unsigned buf_size, const int16_t *qmat)
static const uint8_t dc_codebook[7]
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
#define AV_PIX_FMT_YUV422P12
#define ALPHA_SHIFT_16_TO_12(alpha_val)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
#define AV_PIX_FMT_YUV444P12
#define ALPHA_SHIFT_8_TO_12(alpha_val)
int skip_alpha
Skip processing alpha if supported by codec.
static av_cold int decode_close(AVCodecContext *avctx)
static int decode_frame_header(ProresContext *ctx, const uint8_t *buf, const int data_size, AVCodecContext *avctx)
#define OPEN_READER(name, gb)
#define AV_PROFILE_PRORES_4444
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
#define AV_PIX_FMT_YUVA444P10
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
#define AV_PROFILE_PRORES_PROXY
@ AV_PIX_FMT_VIDEOTOOLBOX
hardware decoding through Videotoolbox
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
static int decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
static void decode_slice_alpha(const ProresContext *ctx, uint16_t *dst, int dst_stride, const uint8_t *buf, int buf_size, int blocks_per_slice)
Decode alpha slice plane.
const char * name
Name of the codec implementation.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have update_thread_context() run it in the next thread. Add AV_CODEC_CAP_FRAME_THREADS to the codec capabilities. There will be very little speed gain at this point but it should work. If there are inter-frame dependencies
static const uint8_t lev_to_cb[10]
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
#define AV_FRAME_FLAG_INTERLACED
A flag to mark frames whose content is interlaced.
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
void * av_calloc(size_t nmemb, size_t size)
#define HWACCEL_VIDEOTOOLBOX(codec)
static void unpack_alpha_10(GetBitContext *gb, uint16_t *dst, int num_coeffs, const int num_bits)
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call ff_thread_finish_setup() afterwards. If some code can 't be moved
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
main external API structure.
#define ALPHA_SHIFT_16_TO_10(alpha_val)
#define SHOW_UBITS(name, gb, num)
#define AV_PIX_FMT_YUVA422P12
static const FFHWAccel * ffhwaccel(const AVHWAccel *codec)
int(* decode_slice)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Callback for each slice.
static av_always_inline int decode_dc_coeffs(GetBitContext *gb, int16_t *out, int blocks_per_slice)
static int decode_slice_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
av_cold void ff_init_scantable_permutation(uint8_t *idct_permutation, enum idct_permutation_type perm_type)
static av_cold int decode_init(AVCodecContext *avctx)
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
This structure stores compressed data.
static void unpack_alpha_12(GetBitContext *gb, uint16_t *dst, int num_coeffs, const int num_bits)
int width
picture width / height.
#define AV_PROFILE_PRORES_XQ
#define flags(name, subs,...)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define MKTAG(a, b, c, d)
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_WB24 unsigned int_TMPL AV_RB16