Go to the documentation of this file.
29 #include "config_components.h"
50 for (ch = 0; ch <
s->channels; ch++) {
52 sizeof(**
s->planar_samples))))
68 for (ch = 0; ch <
s->channels; ch++) {
70 memcpy(&
s->planar_samples[ch][0], &
s->planar_samples[ch][
AC3_BLOCK_SIZE *
s->num_blocks],
90 for (ch = 0; ch <
s->channels; ch++) {
95 s->fdsp->vector_fmul(
s->windowed_samples, input_samples,
101 s->tx_fn(
s->tx,
block->mdct_coef[ch+1],
102 s->windowed_samples,
sizeof(
float));
121 int cpl_start, num_cpl_coefs;
125 memset(fixed_cpl_coords, 0,
AC3_MAX_BLOCKS *
sizeof(*cpl_coords));
130 cpl_start =
s->start_freq[
CPL_CH] - 1;
131 num_cpl_coefs =
FFALIGN(
s->num_cpl_subbands * 12 + 1, 32);
132 cpl_start =
FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
138 if (!
block->cpl_in_use)
140 memset(cpl_coef, 0, num_cpl_coefs *
sizeof(*cpl_coef));
141 for (ch = 1; ch <=
s->fbw_channels; ch++) {
143 if (!
block->channel_in_cpl[ch])
145 for (
i = 0;
i < num_cpl_coefs;
i++)
146 cpl_coef[
i] += ch_coef[
i];
158 int band_size =
s->cpl_band_sizes[bnd];
159 for (ch =
CPL_CH; ch <=
s->fbw_channels; ch++) {
164 for (j = 0; j < band_size; j++) {
177 if (!
block->cpl_in_use)
179 for (ch = 1; ch <=
s->fbw_channels; ch++) {
180 if (!
block->channel_in_cpl[ch])
182 for (bnd = 0; bnd <
s->num_cpl_bands; bnd++) {
194 memset(
block->new_cpl_coords, 0,
sizeof(
block->new_cpl_coords));
196 if (
block->cpl_in_use) {
203 for (ch = 1; ch <=
s->fbw_channels; ch++)
204 block->new_cpl_coords[ch] = 1;
206 for (ch = 1; ch <=
s->fbw_channels; ch++) {
207 if (!
block->channel_in_cpl[ch])
210 block->new_cpl_coords[ch] = 1;
213 for (bnd = 0; bnd <
s->num_cpl_bands; bnd++) {
214 coord_diff +=
FFABS(cpl_coords[
blk-1][ch][bnd] -
215 cpl_coords[
blk ][ch][bnd]);
217 coord_diff /=
s->num_cpl_bands;
219 block->new_cpl_coords[ch] = 1;
230 for (bnd = 0; bnd <
s->num_cpl_bands; bnd++) {
236 if (!
block->cpl_in_use) {
241 for (ch = 1; ch <=
s->fbw_channels; ch++) {
243 if (!
block->channel_in_cpl[ch])
246 energy_ch = energy[
blk][ch][bnd];
248 while (blk1 < s->
num_blocks && !
s->blocks[blk1].new_cpl_coords[ch]) {
249 if (
s->blocks[blk1].cpl_in_use) {
250 energy_cpl += energy[blk1][
CPL_CH][bnd];
251 energy_ch += energy[blk1][ch][bnd];
264 if (!
block->cpl_in_use)
268 s->ac3dsp.float_to_fixed24(fixed_cpl_coords[
blk][1],
270 s->fbw_channels * 16);
272 s->ac3dsp.extract_exponents(
block->cpl_coord_exp[1],
273 fixed_cpl_coords[
blk][1],
274 s->fbw_channels * 16);
276 for (ch = 1; ch <=
s->fbw_channels; ch++) {
277 int bnd, min_exp, max_exp, master_exp;
279 if (!
block->new_cpl_coords[ch])
283 min_exp = max_exp =
block->cpl_coord_exp[ch][0];
284 for (bnd = 1; bnd <
s->num_cpl_bands; bnd++) {
285 int exp =
block->cpl_coord_exp[ch][bnd];
289 master_exp = ((max_exp - 15) + 2) / 3;
290 master_exp =
FFMAX(master_exp, 0);
291 while (min_exp < master_exp * 3)
293 for (bnd = 0; bnd <
s->num_cpl_bands; bnd++) {
295 master_exp * 3, 0, 15);
297 block->cpl_master_exp[ch] = master_exp;
300 for (bnd = 0; bnd <
s->num_cpl_bands; bnd++) {
301 int cpl_exp =
block->cpl_coord_exp[ch][bnd];
302 int cpl_mant = (fixed_cpl_coords[
blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
308 block->cpl_coord_mant[ch][bnd] = cpl_mant;
332 block->new_rematrixing_strategy = !
blk;
334 block->num_rematrixing_bands = 4;
335 if (
block->cpl_in_use) {
336 block->num_rematrixing_bands -= (
s->start_freq[
CPL_CH] <= 61);
337 block->num_rematrixing_bands -= (
s->start_freq[
CPL_CH] == 37);
339 block->new_rematrixing_strategy = 1;
343 if (!
s->rematrixing_enabled) {
348 for (bnd = 0; bnd <
block->num_rematrixing_bands; bnd++) {
354 block->mdct_coef[2] + start, end - start);
357 if (
FFMIN(sum[2], sum[3]) <
FFMIN(sum[0], sum[1]))
358 block->rematrixing_flags[bnd] = 1;
360 block->rematrixing_flags[bnd] = 0;
365 block->new_rematrixing_strategy = 1;
379 if (
s->options.allow_per_frame_metadata) {
392 s->cpl_on =
s->cpl_enabled;
#define FF_ALLOCZ_TYPED_ARRAY(p, nelem)
static int nb_coefs(int length, int level, uint64_t sn)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
void ff_ac3_compute_coupling_strategy(AC3EncodeContext *s)
Set the initial coupling strategy parameters prior to coupling analysis.
static void copy_input_samples(AC3EncodeContext *s, SampleType **samples)
uint8_t channel_in_cpl[AC3_MAX_CHANNELS]
channel in coupling (chincpl)
This structure describes decoded (raw) audio or video data.
int AC3_NAME() encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
int ff_ac3_validate_metadata(AC3EncodeContext *s)
Validate metadata options as set by AVOption system.
static int allocate_sample_buffers(AC3EncodeContext *s)
void ff_eac3_set_cpl_states(AC3EncodeContext *s)
Set coupling states.
#define FF_ALLOC_TYPED_ARRAY(p, nelem)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
#define LOCAL_ALIGNED_32(t, v,...)
AC-3 encoder private context.
#define AC3_MAX_CHANNELS
maximum number of channels, including coupling channel
Data for a single audio block.
void ff_ac3_adjust_frame_size(AC3EncodeContext *s)
Adjust the frame size to make the average bit rate match the target bit rate.
static void scale_coefficients(AC3EncodeContext *s)
static void clip_coefficients(AudioDSPContext *adsp, int32_t *coef, unsigned int len)
static void apply_channel_coupling(AC3EncodeContext *s)
static CoefType calc_cpl_coord(CoefSumType energy_ch, CoefSumType energy_cpl)
const uint8_t ff_ac3_rematrix_band_tab[5]
Table of bin locations for rematrixing bands reference: Section 7.5.2 Rematrixing : Frequency Band De...
#define CPL_CH
coupling channel index
#define i(width, name, range_min, range_max)
uint8_t ** extended_data
pointers to the data planes/channels.
uint8_t rematrixing_flags[4]
rematrixing flags
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
static void compute_rematrixing_strategy(AC3EncodeContext *s)
int num_blocks
number of blocks per frame
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
static void sum_square_butterfly(AC3EncodeContext *s, int64_t sum[4], const int32_t *coef0, const int32_t *coef1, int len)
int cpl_end_freq
coupling channel end frequency bin
int num_rematrixing_bands
number of rematrixing bands
main external API structure.
static void apply_mdct(AC3EncodeContext *s)
Filter the word “frame” indicates either a video frame or a group of audio samples
#define MAC_COEF(d, a, b)
This structure stores compressed data.
AVCodecContext * avctx
parent AVCodecContext
int ff_ac3_encode_frame_common_end(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
The exact code depends on how similar the blocks are and how related they are to the block
int cpl_in_use
coupling in use for this block (cplinu)
#define NEW_CPL_COORD_THRESHOLD