FFmpeg
ffv1enc.c
Go to the documentation of this file.
1 /*
2  * FFV1 encoder
3  *
4  * Copyright (c) 2003-2013 Michael Niedermayer <michaelni@gmx.at>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * FF Video Codec 1 (a lossless codec) encoder
26  */
27 
28 #include "libavutil/attributes.h"
29 #include "libavutil/avassert.h"
30 #include "libavutil/crc.h"
31 #include "libavutil/mem.h"
32 #include "libavutil/opt.h"
33 #include "libavutil/pixdesc.h"
34 #include "libavutil/qsort.h"
35 
36 #include "avcodec.h"
37 #include "encode.h"
38 #include "codec_internal.h"
39 #include "put_bits.h"
40 #include "put_golomb.h"
41 #include "rangecoder.h"
42 #include "ffv1.h"
43 #include "ffv1enc.h"
44 
45 static const int8_t quant5_10bit[256] = {
46  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
47  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
48  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
49  1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
50  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
51  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
52  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
53  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
54  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
55  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
56  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
57  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
58  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1,
59  -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
60  -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
61  -1, -1, -1, -1, -1, -1, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0,
62 };
63 
64 static const int8_t quant5[256] = {
65  0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
66  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
67  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
68  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
69  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
70  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
71  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
72  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
73  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
74  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
75  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
76  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
77  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
78  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
79  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
80  -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1,
81 };
82 
83 static const int8_t quant9_10bit[256] = {
84  0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
85  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
86  3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
87  3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
88  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
89  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
90  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
91  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
92  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
93  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
94  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
95  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
96  -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3,
97  -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,
98  -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
99  -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -0, -0, -0, -0,
100 };
101 
102 static const int8_t quant11[256] = {
103  0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
104  4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
105  4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
106  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
107  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
108  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
109  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
110  5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
111  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
112  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
113  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
114  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
115  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
116  -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -4, -4,
117  -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
118  -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -1,
119 };
120 
121 static const uint8_t ver2_state[256] = {
122  0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
123  59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
124  40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
125  53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
126  87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
127  85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
128  105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
129  115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
130  165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
131  147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
132  172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
133  175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
134  197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
135  209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
136  226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
137  241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
138 };
139 
140 static void find_best_state(uint8_t best_state[256][256],
141  const uint8_t one_state[256])
142 {
143  int i, j, k, m;
144  uint32_t l2tab[256];
145 
146  for (i = 1; i < 256; i++)
147  l2tab[i] = -log2(i / 256.0) * ((1U << 31) / 8);
148 
149  for (i = 0; i < 256; i++) {
150  uint64_t best_len[256];
151 
152  for (j = 0; j < 256; j++)
153  best_len[j] = UINT64_MAX;
154 
155  for (j = FFMAX(i - 10, 1); j < FFMIN(i + 11, 256); j++) {
156  uint32_t occ[256] = { 0 };
157  uint64_t len = 0;
158  occ[j] = UINT32_MAX;
159 
160  if (!one_state[j])
161  continue;
162 
163  for (k = 0; k < 256; k++) {
164  uint32_t newocc[256] = { 0 };
165  for (m = 1; m < 256; m++)
166  if (occ[m]) {
167  len += (occ[m]*(( i *(uint64_t)l2tab[ m]
168  + (256-i)*(uint64_t)l2tab[256-m])>>8)) >> 8;
169  }
170  if (len < best_len[k]) {
171  best_len[k] = len;
172  best_state[i][k] = j;
173  }
174  for (m = 1; m < 256; m++)
175  if (occ[m]) {
176  newocc[ one_state[ m]] += occ[m] * (uint64_t) i >> 8;
177  newocc[256 - one_state[256 - m]] += occ[m] * (uint64_t)(256 - i) >> 8;
178  }
179  memcpy(occ, newocc, sizeof(occ));
180  }
181  }
182  }
183 }
184 
186  uint8_t *state, int v,
187  int is_signed,
188  uint64_t rc_stat[256][2],
189  uint64_t rc_stat2[32][2])
190 {
191  int i;
192 
193 #define put_rac(C, S, B) \
194  do { \
195  if (rc_stat) { \
196  rc_stat[*(S)][B]++; \
197  rc_stat2[(S) - state][B]++; \
198  } \
199  put_rac(C, S, B); \
200  } while (0)
201 
202  if (v) {
203  const unsigned a = is_signed ? FFABS(v) : v;
204  const int e = av_log2(a);
205  put_rac(c, state + 0, 0);
206  if (e <= 9) {
207  for (i = 0; i < e; i++)
208  put_rac(c, state + 1 + i, 1); // 1..10
209  put_rac(c, state + 1 + i, 0);
210 
211  for (i = e - 1; i >= 0; i--)
212  put_rac(c, state + 22 + i, (a >> i) & 1); // 22..31
213 
214  if (is_signed)
215  put_rac(c, state + 11 + e, v < 0); // 11..21
216  } else {
217  for (i = 0; i < e; i++)
218  put_rac(c, state + 1 + FFMIN(i, 9), 1); // 1..10
219  put_rac(c, state + 1 + 9, 0);
220 
221  for (i = e - 1; i >= 0; i--)
222  put_rac(c, state + 22 + FFMIN(i, 9), (a >> i) & 1); // 22..31
223 
224  if (is_signed)
225  put_rac(c, state + 11 + 10, v < 0); // 11..21
226  }
227  } else {
228  put_rac(c, state + 0, 1);
229  }
230 #undef put_rac
231 }
232 
233 static av_noinline void put_symbol(RangeCoder *c, uint8_t *state,
234  int v, int is_signed)
235 {
236  put_symbol_inline(c, state, v, is_signed, NULL, NULL);
237 }
238 
239 
240 static inline void put_vlc_symbol(PutBitContext *pb, VlcState *const state,
241  int v, int bits)
242 {
243  int i, k, code;
244  v = fold(v - state->bias, bits);
245 
246  i = state->count;
247  k = 0;
248  while (i < state->error_sum) { // FIXME: optimize
249  k++;
250  i += i;
251  }
252 
253  av_assert2(k <= 16);
254 
255  code = v ^ ((2 * state->drift + state->count) >> 31);
256 
257  ff_dlog(NULL, "v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code,
258  state->bias, state->error_sum, state->drift, state->count, k);
259  set_sr_golomb(pb, code, k, 12, bits);
260 
262 }
263 
264 #define TYPE int16_t
265 #define RENAME(name) name
266 #include "ffv1enc_template.c"
267 #undef TYPE
268 #undef RENAME
269 
270 #define TYPE int32_t
271 #define RENAME(name) name ## 32
272 #include "ffv1enc_template.c"
273 
275  const uint8_t *src, int w, int h,
276  int stride, int plane_index, int remap_index, int pixel_stride, int ac)
277 {
278  int x, y, i, ret;
279  const int pass1 = !!(f->avctx->flags & AV_CODEC_FLAG_PASS1);
280  const int ring_size = f->context_model ? 3 : 2;
281  int16_t *sample[3];
282  sc->run_index = 0;
283 
284  memset(sc->sample_buffer, 0, ring_size * (w + 6) * sizeof(*sc->sample_buffer));
285 
286  for (y = 0; y < h; y++) {
287  for (i = 0; i < ring_size; i++)
288  sample[i] = sc->sample_buffer + (w + 6) * ((h + i - y) % ring_size) + 3;
289 
290  sample[0][-1]= sample[1][0 ];
291  sample[1][ w]= sample[1][w-1];
292 
293  if (f->bits_per_raw_sample <= 8) {
294  for (x = 0; x < w; x++)
295  sample[0][x] = src[x * pixel_stride + stride * y];
296  if (sc->remap)
297  for (x = 0; x < w; x++)
298  sample[0][x] = sc->fltmap[remap_index][ sample[0][x] ];
299 
300  if((ret = encode_line(f, sc, f->avctx, w, sample, plane_index, 8, ac, pass1)) < 0)
301  return ret;
302  } else {
303  if (f->packed_at_lsb) {
304  for (x = 0; x < w; x++) {
305  sample[0][x] = ((uint16_t*)(src + stride*y))[x * pixel_stride];
306  }
307  } else {
308  for (x = 0; x < w; x++) {
309  sample[0][x] = ((uint16_t*)(src + stride*y))[x * pixel_stride] >> (16 - f->bits_per_raw_sample);
310  }
311  }
312  if (sc->remap)
313  for (x = 0; x < w; x++)
314  sample[0][x] = sc->fltmap[remap_index][ (uint16_t)sample[0][x] ];
315 
316  if((ret = encode_line(f, sc, f->avctx, w, sample, plane_index, f->bits_per_raw_sample, ac, pass1)) < 0)
317  return ret;
318  }
319  }
320  return 0;
321 }
322 
324  const uint8_t *src, int w, int h,
325  int stride, int remap_index, int pixel_stride)
326 {
327  int x, y;
328 
329  memset(sc->fltmap[remap_index], 0, 65536 * sizeof(*sc->fltmap[remap_index]));
330 
331  for (y = 0; y < h; y++) {
332  if (f->bits_per_raw_sample <= 8) {
333  for (x = 0; x < w; x++)
334  sc->fltmap[remap_index][ src[x * pixel_stride + stride * y] ] = 1;
335  } else {
336  if (f->packed_at_lsb) {
337  for (x = 0; x < w; x++)
338  sc->fltmap[remap_index][ ((uint16_t*)(src + stride*y))[x * pixel_stride] ] = 1;
339  } else {
340  for (x = 0; x < w; x++)
341  sc->fltmap[remap_index][ ((uint16_t*)(src + stride*y))[x * pixel_stride] >> (16 - f->bits_per_raw_sample) ] = 1;
342  }
343  }
344  }
345 }
346 
347 static void write_quant_table(RangeCoder *c, int16_t *quant_table)
348 {
349  int last = 0;
350  int i;
351  uint8_t state[CONTEXT_SIZE];
352  memset(state, 128, sizeof(state));
353 
354  for (i = 1; i < MAX_QUANT_TABLE_SIZE/2; i++)
355  if (quant_table[i] != quant_table[i - 1]) {
356  put_symbol(c, state, i - last - 1, 0);
357  last = i;
358  }
359  put_symbol(c, state, i - last - 1, 0);
360 }
361 
364 {
365  int i;
366  for (i = 0; i < 5; i++)
368 }
369 
370 static int contains_non_128(uint8_t (*initial_state)[CONTEXT_SIZE],
371  int nb_contexts)
372 {
373  if (!initial_state)
374  return 0;
375  for (int i = 0; i < nb_contexts; i++)
376  for (int j = 0; j < CONTEXT_SIZE; j++)
377  if (initial_state[i][j] != 128)
378  return 1;
379  return 0;
380 }
381 
383 {
384  uint8_t state[CONTEXT_SIZE];
385  int i, j;
386  RangeCoder *const c = &f->slices[0].c;
387 
388  memset(state, 128, sizeof(state));
389 
390  if (f->version < 2) {
391  put_symbol(c, state, f->version, 0);
392  put_symbol(c, state, f->ac, 0);
393  if (f->ac == AC_RANGE_CUSTOM_TAB) {
394  for (i = 1; i < 256; i++)
395  put_symbol(c, state,
396  f->state_transition[i] - c->one_state[i], 1);
397  }
398  put_symbol(c, state, f->colorspace, 0); //YUV cs type
399  if (f->version > 0)
400  put_symbol(c, state, f->bits_per_raw_sample, 0);
401  put_rac(c, state, f->chroma_planes);
402  put_symbol(c, state, f->chroma_h_shift, 0);
403  put_symbol(c, state, f->chroma_v_shift, 0);
404  put_rac(c, state, f->transparency);
405 
406  write_quant_tables(c, f->quant_tables[f->context_model]);
407  } else if (f->version < 3) {
408  put_symbol(c, state, f->slice_count, 0);
409  for (i = 0; i < f->slice_count; i++) {
410  FFV1SliceContext *fs = &f->slices[i];
411  put_symbol(c, state,
412  (fs->slice_x + 1) * f->num_h_slices / f->width, 0);
413  put_symbol(c, state,
414  (fs->slice_y + 1) * f->num_v_slices / f->height, 0);
415  put_symbol(c, state,
416  (fs->slice_width + 1) * f->num_h_slices / f->width - 1,
417  0);
418  put_symbol(c, state,
419  (fs->slice_height + 1) * f->num_v_slices / f->height - 1,
420  0);
421  for (j = 0; j < f->plane_count; j++) {
422  put_symbol(c, state, fs->plane[j].quant_table_index, 0);
423  av_assert0(fs->plane[j].quant_table_index == f->context_model);
424  }
425  }
426  }
427 }
428 
430 {
431  f->combined_version = f->version << 16;
432  if (f->version > 2) {
433  if (f->version == 3) {
434  f->micro_version = 4;
435  } else if (f->version == 4) {
436  f->micro_version = 8;
437  } else
438  av_assert0(0);
439 
440  f->combined_version += f->micro_version;
441  } else
442  av_assert0(f->micro_version == 0);
443 }
444 
446 {
447  FFV1Context *f = avctx->priv_data;
448 
449  RangeCoder c;
450  uint8_t state[CONTEXT_SIZE];
451  int i, j, k;
452  uint8_t state2[32][CONTEXT_SIZE];
453  unsigned v;
454 
455  memset(state2, 128, sizeof(state2));
456  memset(state, 128, sizeof(state));
457 
458  f->avctx->extradata_size = 10000 + 4 +
459  (11 * 11 * 5 * 5 * 5 + 11 * 11 * 11) * 32;
460  f->avctx->extradata = av_malloc(f->avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE);
461  if (!f->avctx->extradata)
462  return AVERROR(ENOMEM);
463  ff_init_range_encoder(&c, f->avctx->extradata, f->avctx->extradata_size);
464  ff_build_rac_states(&c, 0.05 * (1LL << 32), 256 - 8);
465 
466  put_symbol(&c, state, f->version, 0);
467  if (f->version > 2)
468  put_symbol(&c, state, f->micro_version, 0);
469 
470  put_symbol(&c, state, f->ac, 0);
471  if (f->ac == AC_RANGE_CUSTOM_TAB)
472  for (i = 1; i < 256; i++)
473  put_symbol(&c, state, f->state_transition[i] - c.one_state[i], 1);
474 
475  put_symbol(&c, state, f->colorspace, 0); // YUV cs type
476  put_symbol(&c, state, f->bits_per_raw_sample, 0);
477  put_rac(&c, state, f->chroma_planes);
478  put_symbol(&c, state, f->chroma_h_shift, 0);
479  put_symbol(&c, state, f->chroma_v_shift, 0);
480  put_rac(&c, state, f->transparency);
481  put_symbol(&c, state, f->num_h_slices - 1, 0);
482  put_symbol(&c, state, f->num_v_slices - 1, 0);
483 
484  put_symbol(&c, state, f->quant_table_count, 0);
485  for (i = 0; i < f->quant_table_count; i++)
486  write_quant_tables(&c, f->quant_tables[i]);
487 
488  for (i = 0; i < f->quant_table_count; i++) {
489  if (contains_non_128(f->initial_states[i], f->context_count[i])) {
490  put_rac(&c, state, 1);
491  for (j = 0; j < f->context_count[i]; j++)
492  for (k = 0; k < CONTEXT_SIZE; k++) {
493  int pred = j ? f->initial_states[i][j - 1][k] : 128;
494  put_symbol(&c, state2[k],
495  (int8_t)(f->initial_states[i][j][k] - pred), 1);
496  }
497  } else {
498  put_rac(&c, state, 0);
499  }
500  }
501 
502  if (f->version > 2) {
503  put_symbol(&c, state, f->ec, 0);
504  put_symbol(&c, state, f->intra = (f->avctx->gop_size < 2), 0);
505  }
506 
507  f->avctx->extradata_size = ff_rac_terminate(&c, 0);
508  v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), f->crcref, f->avctx->extradata, f->avctx->extradata_size) ^ (f->crcref ? 0x8CD88196 : 0);
509  AV_WL32(f->avctx->extradata + f->avctx->extradata_size, v);
510  f->avctx->extradata_size += 4;
511 
512  return 0;
513 }
514 
515 static int sort_stt(FFV1Context *s, uint8_t stt[256])
516 {
517  int i, i2, changed, print = 0;
518 
519  do {
520  changed = 0;
521  for (i = 12; i < 244; i++) {
522  for (i2 = i + 1; i2 < 245 && i2 < i + 4; i2++) {
523 
524 #define COST(old, new) \
525  s->rc_stat[old][0] * -log2((256 - (new)) / 256.0) + \
526  s->rc_stat[old][1] * -log2((new) / 256.0)
527 
528 #define COST2(old, new) \
529  COST(old, new) + COST(256 - (old), 256 - (new))
530 
531  double size0 = COST2(i, i) + COST2(i2, i2);
532  double sizeX = COST2(i, i2) + COST2(i2, i);
533  if (size0 - sizeX > size0*(1e-14) && i != 128 && i2 != 128) {
534  int j;
535  FFSWAP(int, stt[i], stt[i2]);
536  FFSWAP(int, s->rc_stat[i][0], s->rc_stat[i2][0]);
537  FFSWAP(int, s->rc_stat[i][1], s->rc_stat[i2][1]);
538  if (i != 256 - i2) {
539  FFSWAP(int, stt[256 - i], stt[256 - i2]);
540  FFSWAP(int, s->rc_stat[256 - i][0], s->rc_stat[256 - i2][0]);
541  FFSWAP(int, s->rc_stat[256 - i][1], s->rc_stat[256 - i2][1]);
542  }
543  for (j = 1; j < 256; j++) {
544  if (stt[j] == i)
545  stt[j] = i2;
546  else if (stt[j] == i2)
547  stt[j] = i;
548  if (i != 256 - i2) {
549  if (stt[256 - j] == 256 - i)
550  stt[256 - j] = 256 - i2;
551  else if (stt[256 - j] == 256 - i2)
552  stt[256 - j] = 256 - i;
553  }
554  }
555  print = changed = 1;
556  }
557  }
558  }
559  } while (changed);
560  return print;
561 }
562 
563 
565 {
566  FFV1Context *s = avctx->priv_data;
567  int plane_count = 1 + 2*s->chroma_planes + s->transparency;
568  int max_h_slices = AV_CEIL_RSHIFT(avctx->width , s->chroma_h_shift);
569  int max_v_slices = AV_CEIL_RSHIFT(avctx->height, s->chroma_v_shift);
570  s->num_v_slices = (avctx->width > 352 || avctx->height > 288 || !avctx->slices) ? 2 : 1;
571  s->num_v_slices = FFMIN(s->num_v_slices, max_v_slices);
572  for (; s->num_v_slices <= 32; s->num_v_slices++) {
573  for (s->num_h_slices = s->num_v_slices; s->num_h_slices <= 2*s->num_v_slices; s->num_h_slices++) {
574  int maxw = (avctx->width + s->num_h_slices - 1) / s->num_h_slices;
575  int maxh = (avctx->height + s->num_v_slices - 1) / s->num_v_slices;
576  if (s->num_h_slices > max_h_slices || s->num_v_slices > max_v_slices)
577  continue;
578  if (maxw * maxh * (int64_t)(s->bits_per_raw_sample+1) * plane_count > 8<<24)
579  continue;
580  if (s->version < 4)
581  if ( ff_need_new_slices(avctx->width , s->num_h_slices, s->chroma_h_shift)
582  ||ff_need_new_slices(avctx->height, s->num_v_slices, s->chroma_v_shift))
583  continue;
584  if (avctx->slices == s->num_h_slices * s->num_v_slices && avctx->slices <= MAX_SLICES)
585  return 0;
586  if (maxw*maxh > 360*288)
587  continue;
588  if (!avctx->slices)
589  return 0;
590  }
591  }
592  av_log(avctx, AV_LOG_ERROR,
593  "Unsupported number %d of slices requested, please specify a "
594  "supported number with -slices (ex:4,6,9,12,16, ...)\n",
595  avctx->slices);
596  return AVERROR(ENOSYS);
597 }
598 
600 {
601  FFV1Context *s = avctx->priv_data;
602  int i, j, k, m, ret;
603 
604  if ((avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) ||
605  avctx->slices > 1)
606  s->version = FFMAX(s->version, 2);
607 
608  if ((avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) && s->ac == AC_GOLOMB_RICE) {
609  av_log(avctx, AV_LOG_ERROR, "2 Pass mode is not possible with golomb coding\n");
610  return AVERROR(EINVAL);
611  }
612 
613  // Unspecified level & slices, we choose version 1.2+ to ensure multithreaded decodability
614  if (avctx->slices == 0 && avctx->level < 0 && avctx->width * avctx->height > 720*576)
615  s->version = FFMAX(s->version, 2);
616 
617  if (avctx->level <= 0 && s->version == 2) {
618  s->version = 3;
619  }
620  if (avctx->level >= 0 && avctx->level <= 4) {
621  if (avctx->level < s->version) {
622  av_log(avctx, AV_LOG_ERROR, "Version %d needed for requested features but %d requested\n", s->version, avctx->level);
623  return AVERROR(EINVAL);
624  }
625  s->version = avctx->level;
626  }
627 
628  if (s->ec < 0) {
629  if (s->version >= 4) {
630  s->ec = 2;
631  s->crcref = 0x7a8c4079;
632  } else if (s->version >= 3) {
633  s->ec = 1;
634  } else
635  s->ec = 0;
636  }
637 
638  // CRC requires version 3+
639  if (s->ec == 1)
640  s->version = FFMAX(s->version, 3);
641  if (s->ec == 2)
642  s->version = FFMAX(s->version, 4);
643 
644  if ((s->version == 2 || s->version>3) && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
645  av_log(avctx, AV_LOG_ERROR, "Version 2 or 4 needed for requested features but version 2 or 4 is experimental and not enabled\n");
646  return AVERROR_INVALIDDATA;
647  }
648 
649  if (s->ac == AC_RANGE_CUSTOM_TAB) {
650  for (i = 1; i < 256; i++)
651  s->state_transition[i] = ver2_state[i];
652  } else {
653  RangeCoder c;
654  ff_build_rac_states(&c, 0.05 * (1LL << 32), 256 - 8);
655  for (i = 1; i < 256; i++)
656  s->state_transition[i] = c.one_state[i];
657  }
658 
659  for (i = 0; i < 256; i++) {
660  s->quant_table_count = 2;
661  if ((s->qtable == -1 && s->bits_per_raw_sample <= 8) || s->qtable == 1) {
662  s->quant_tables[0][0][i]= quant11[i];
663  s->quant_tables[0][1][i]= 11*quant11[i];
664  s->quant_tables[0][2][i]= 11*11*quant11[i];
665  s->quant_tables[1][0][i]= quant11[i];
666  s->quant_tables[1][1][i]= 11*quant11[i];
667  s->quant_tables[1][2][i]= 11*11*quant5 [i];
668  s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
669  s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
670  s->context_count[0] = (11 * 11 * 11 + 1) / 2;
671  s->context_count[1] = (11 * 11 * 5 * 5 * 5 + 1) / 2;
672  } else {
673  s->quant_tables[0][0][i]= quant9_10bit[i];
674  s->quant_tables[0][1][i]= 9*quant9_10bit[i];
675  s->quant_tables[0][2][i]= 9*9*quant9_10bit[i];
676  s->quant_tables[1][0][i]= quant9_10bit[i];
677  s->quant_tables[1][1][i]= 9*quant9_10bit[i];
678  s->quant_tables[1][2][i]= 9*9*quant5_10bit[i];
679  s->quant_tables[1][3][i]= 5*9*9*quant5_10bit[i];
680  s->quant_tables[1][4][i]= 5*5*9*9*quant5_10bit[i];
681  s->context_count[0] = (9 * 9 * 9 + 1) / 2;
682  s->context_count[1] = (9 * 9 * 5 * 5 * 5 + 1) / 2;
683  }
684  }
685 
687  return ret;
688 
689  if (!s->transparency)
690  s->plane_count = 2;
691  if (!s->chroma_planes && s->version > 3)
692  s->plane_count--;
693 
694  s->picture_number = 0;
695 
696  if (avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) {
697  for (i = 0; i < s->quant_table_count; i++) {
698  s->rc_stat2[i] = av_mallocz(s->context_count[i] *
699  sizeof(*s->rc_stat2[i]));
700  if (!s->rc_stat2[i])
701  return AVERROR(ENOMEM);
702  }
703  }
704  if (avctx->stats_in) {
705  char *p = avctx->stats_in;
706  uint8_t (*best_state)[256] = av_malloc_array(256, 256);
707  int gob_count = 0;
708  char *next;
709  if (!best_state)
710  return AVERROR(ENOMEM);
711 
712  av_assert0(s->version >= 2);
713 
714  for (;;) {
715  for (j = 0; j < 256; j++)
716  for (i = 0; i < 2; i++) {
717  s->rc_stat[j][i] = strtol(p, &next, 0);
718  if (next == p) {
719  av_log(avctx, AV_LOG_ERROR,
720  "2Pass file invalid at %d %d [%s]\n", j, i, p);
721  av_freep(&best_state);
722  return AVERROR_INVALIDDATA;
723  }
724  p = next;
725  }
726  for (i = 0; i < s->quant_table_count; i++)
727  for (j = 0; j < s->context_count[i]; j++) {
728  for (k = 0; k < 32; k++)
729  for (m = 0; m < 2; m++) {
730  s->rc_stat2[i][j][k][m] = strtol(p, &next, 0);
731  if (next == p) {
732  av_log(avctx, AV_LOG_ERROR,
733  "2Pass file invalid at %d %d %d %d [%s]\n",
734  i, j, k, m, p);
735  av_freep(&best_state);
736  return AVERROR_INVALIDDATA;
737  }
738  p = next;
739  }
740  }
741  gob_count = strtol(p, &next, 0);
742  if (next == p || gob_count <= 0) {
743  av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
744  av_freep(&best_state);
745  return AVERROR_INVALIDDATA;
746  }
747  p = next;
748  while (*p == '\n' || *p == ' ')
749  p++;
750  if (p[0] == 0)
751  break;
752  }
753  if (s->ac == AC_RANGE_CUSTOM_TAB)
754  sort_stt(s, s->state_transition);
755 
756  find_best_state(best_state, s->state_transition);
757 
758  for (i = 0; i < s->quant_table_count; i++) {
759  for (k = 0; k < 32; k++) {
760  double a=0, b=0;
761  int jp = 0;
762  for (j = 0; j < s->context_count[i]; j++) {
763  double p = 128;
764  if (s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1] > 200 && j || a+b > 200) {
765  if (a+b)
766  p = 256.0 * b / (a + b);
767  s->initial_states[i][jp][k] =
768  best_state[av_clip(round(p), 1, 255)][av_clip_uint8((a + b) / gob_count)];
769  for(jp++; jp<j; jp++)
770  s->initial_states[i][jp][k] = s->initial_states[i][jp-1][k];
771  a=b=0;
772  }
773  a += s->rc_stat2[i][j][k][0];
774  b += s->rc_stat2[i][j][k][1];
775  if (a+b) {
776  p = 256.0 * b / (a + b);
777  }
778  s->initial_states[i][j][k] =
779  best_state[av_clip(round(p), 1, 255)][av_clip_uint8((a + b) / gob_count)];
780  }
781  }
782  }
783  av_freep(&best_state);
784  }
785 
786  if (s->version <= 1) {
787  /* Disable slices when the version doesn't support them */
788  s->num_h_slices = 1;
789  s->num_v_slices = 1;
790  }
791 
793 
794  return 0;
795 }
796 
798  enum AVPixelFormat pix_fmt)
799 {
800  FFV1Context *s = avctx->priv_data;
802 
803  s->plane_count = 3;
804  switch(pix_fmt) {
805  case AV_PIX_FMT_GRAY9:
806  case AV_PIX_FMT_YUV444P9:
807  case AV_PIX_FMT_YUV422P9:
808  case AV_PIX_FMT_YUV420P9:
812  if (!avctx->bits_per_raw_sample)
813  s->bits_per_raw_sample = 9;
814  case AV_PIX_FMT_GRAY10:
822  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
823  s->bits_per_raw_sample = 10;
824  case AV_PIX_FMT_GRAY12:
831  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
832  s->bits_per_raw_sample = 12;
833  case AV_PIX_FMT_GRAY14:
837  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
838  s->bits_per_raw_sample = 14;
839  s->packed_at_lsb = 1;
840  case AV_PIX_FMT_GRAY16:
847  case AV_PIX_FMT_GRAYF16:
848  case AV_PIX_FMT_YAF16:
849  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) {
850  s->bits_per_raw_sample = 16;
851  } else if (!s->bits_per_raw_sample) {
852  s->bits_per_raw_sample = avctx->bits_per_raw_sample;
853  }
854  if (s->bits_per_raw_sample <= 8) {
855  av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
856  return AVERROR_INVALIDDATA;
857  }
858  s->version = FFMAX(s->version, 1);
859  case AV_PIX_FMT_GRAY8:
860  case AV_PIX_FMT_YA8:
861  case AV_PIX_FMT_YUV444P:
862  case AV_PIX_FMT_YUV440P:
863  case AV_PIX_FMT_YUV422P:
864  case AV_PIX_FMT_YUV420P:
865  case AV_PIX_FMT_YUV411P:
866  case AV_PIX_FMT_YUV410P:
867  case AV_PIX_FMT_YUVA444P:
868  case AV_PIX_FMT_YUVA422P:
869  case AV_PIX_FMT_YUVA420P:
870  s->chroma_planes = desc->nb_components < 3 ? 0 : 1;
871  s->colorspace = 0;
872  s->transparency = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
873  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
874  s->bits_per_raw_sample = 8;
875  else if (!s->bits_per_raw_sample)
876  s->bits_per_raw_sample = 8;
877  break;
878  case AV_PIX_FMT_RGB32:
879  s->colorspace = 1;
880  s->transparency = 1;
881  s->chroma_planes = 1;
882  s->bits_per_raw_sample = 8;
883  break;
884  case AV_PIX_FMT_RGBA64:
885  s->colorspace = 1;
886  s->transparency = 1;
887  s->chroma_planes = 1;
888  s->bits_per_raw_sample = 16;
889  s->use32bit = 1;
890  s->version = FFMAX(s->version, 1);
891  break;
892  case AV_PIX_FMT_RGB48:
893  s->colorspace = 1;
894  s->chroma_planes = 1;
895  s->bits_per_raw_sample = 16;
896  s->use32bit = 1;
897  s->version = FFMAX(s->version, 1);
898  break;
899  case AV_PIX_FMT_0RGB32:
900  s->colorspace = 1;
901  s->chroma_planes = 1;
902  s->bits_per_raw_sample = 8;
903  break;
904  case AV_PIX_FMT_GBRP9:
905  if (!avctx->bits_per_raw_sample)
906  s->bits_per_raw_sample = 9;
907  case AV_PIX_FMT_GBRP10:
908  case AV_PIX_FMT_GBRAP10:
909  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
910  s->bits_per_raw_sample = 10;
911  case AV_PIX_FMT_GBRP12:
912  case AV_PIX_FMT_GBRAP12:
913  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
914  s->bits_per_raw_sample = 12;
915  case AV_PIX_FMT_GBRP14:
916  case AV_PIX_FMT_GBRAP14:
917  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
918  s->bits_per_raw_sample = 14;
919  case AV_PIX_FMT_GBRP16:
920  case AV_PIX_FMT_GBRAP16:
921  case AV_PIX_FMT_GBRPF16:
922  case AV_PIX_FMT_GBRAPF16:
923  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
924  s->bits_per_raw_sample = 16;
925  case AV_PIX_FMT_GBRPF32:
926  case AV_PIX_FMT_GBRAPF32:
927  if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
928  s->bits_per_raw_sample = 32;
929  else if (!s->bits_per_raw_sample)
930  s->bits_per_raw_sample = avctx->bits_per_raw_sample;
931  s->transparency = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
932  s->colorspace = 1;
933  s->chroma_planes = 1;
934  if (s->bits_per_raw_sample >= 16) {
935  s->use32bit = 1;
936  }
937  s->version = FFMAX(s->version, 1);
938  break;
939  default:
940  av_log(avctx, AV_LOG_ERROR, "format %s not supported\n",
942  return AVERROR(ENOSYS);
943  }
944  s->flt = !!(desc->flags & AV_PIX_FMT_FLAG_FLOAT);
945  if (s->flt || s->remap_mode > 0)
946  s->version = FFMAX(s->version, 4);
947  av_assert0(s->bits_per_raw_sample >= 8);
948 
949  if (s->remap_mode < 0)
950  s->remap_mode = s->flt ? 2 : 0;
951  if (s->remap_mode == 0 && s->bits_per_raw_sample == 32) {
952  av_log(avctx, AV_LOG_ERROR, "32bit requires remap\n");
953  return AVERROR(EINVAL);
954  }
955  if (s->remap_mode == 2 &&
956  !((s->bits_per_raw_sample == 16 || s->bits_per_raw_sample == 32 || s->bits_per_raw_sample == 64) && s->flt)) {
957  av_log(avctx, AV_LOG_ERROR, "remap 2 is for float16/32/64 only\n");
958  return AVERROR(EINVAL);
959  }
960 
961  return av_pix_fmt_get_chroma_sub_sample(pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
962 }
963 
965 {
966  int ret;
967  FFV1Context *s = avctx->priv_data;
968 
969  if ((ret = ff_ffv1_common_init(avctx, s)) < 0)
970  return ret;
971 
972  if (s->ac == 1) // Compatbility with common command line usage
973  s->ac = AC_RANGE_CUSTOM_TAB;
974  else if (s->ac == AC_RANGE_DEFAULT_TAB_FORCE)
975  s->ac = AC_RANGE_DEFAULT_TAB;
976 
978  if (ret < 0)
979  return ret;
980 
981  if (s->bits_per_raw_sample > (s->version > 3 ? 16 : 8) && !s->remap_mode) {
982  if (s->ac == AC_GOLOMB_RICE) {
983  av_log(avctx, AV_LOG_INFO,
984  "high bits_per_raw_sample, forcing range coder\n");
985  s->ac = AC_RANGE_CUSTOM_TAB;
986  }
987  }
988 
989 
990  ret = ff_ffv1_encode_init(avctx);
991  if (ret < 0)
992  return ret;
993 
994  if (s->version > 1) {
995  if ((ret = ff_ffv1_encode_determine_slices(avctx)) < 0)
996  return ret;
997 
998  if ((ret = ff_ffv1_write_extradata(avctx)) < 0)
999  return ret;
1000  }
1001 
1002  if ((ret = ff_ffv1_init_slice_contexts(s)) < 0)
1003  return ret;
1004  s->slice_count = s->max_slice_count;
1005 
1006  for (int j = 0; j < s->slice_count; j++) {
1007  FFV1SliceContext *sc = &s->slices[j];
1008 
1009  for (int i = 0; i < s->plane_count; i++) {
1010  PlaneContext *const p = &s->slices[j].plane[i];
1011 
1012  p->quant_table_index = s->context_model;
1013  p->context_count = s->context_count[p->quant_table_index];
1014  }
1015  av_assert0(s->remap_mode >= 0);
1016  if (s->remap_mode) {
1017  for (int p = 0; p < 1 + 2*s->chroma_planes + s->transparency ; p++) {
1018  if (s->bits_per_raw_sample == 32) {
1019  sc->unit[p] = av_malloc_array(sc->slice_width, sc->slice_height * sizeof(**sc->unit));
1020  if (!sc->unit[p])
1021  return AVERROR(ENOMEM);
1022  sc->bitmap[p] = av_malloc_array(sc->slice_width * sc->slice_height, sizeof(*sc->bitmap[p]));
1023  if (!sc->bitmap[p])
1024  return AVERROR(ENOMEM);
1025  } else {
1026  sc->fltmap[p] = av_malloc_array(65536, sizeof(*sc->fltmap[p]));
1027  if (!sc->fltmap[p])
1028  return AVERROR(ENOMEM);
1029  }
1030  }
1031  }
1032 
1033  ff_build_rac_states(&s->slices[j].c, 0.05 * (1LL << 32), 256 - 8);
1034 
1035  s->slices[j].remap = s->remap_mode;
1036  }
1037 
1038  if ((ret = ff_ffv1_init_slices_state(s)) < 0)
1039  return ret;
1040 
1041 #define STATS_OUT_SIZE 1024 * 1024 * 6
1042  if (avctx->flags & AV_CODEC_FLAG_PASS1) {
1044  if (!avctx->stats_out)
1045  return AVERROR(ENOMEM);
1046  for (int i = 0; i < s->quant_table_count; i++)
1047  for (int j = 0; j < s->max_slice_count; j++) {
1048  FFV1SliceContext *sc = &s->slices[j];
1049  av_assert0(!sc->rc_stat2[i]);
1050  sc->rc_stat2[i] = av_mallocz(s->context_count[i] *
1051  sizeof(*sc->rc_stat2[i]));
1052  if (!sc->rc_stat2[i])
1053  return AVERROR(ENOMEM);
1054  }
1055  }
1056 
1057  return 0;
1058 }
1059 
1061 {
1062  RangeCoder *c = &sc->c;
1063  uint8_t state[CONTEXT_SIZE];
1064  int j;
1065  memset(state, 128, sizeof(state));
1066 
1067  put_symbol(c, state, sc->sx, 0);
1068  put_symbol(c, state, sc->sy, 0);
1069  put_symbol(c, state, 0, 0);
1070  put_symbol(c, state, 0, 0);
1071  for (j=0; j<f->plane_count; j++) {
1072  put_symbol(c, state, sc->plane[j].quant_table_index, 0);
1073  av_assert0(sc->plane[j].quant_table_index == f->context_model);
1074  }
1075  if (!(f->cur_enc_frame->flags & AV_FRAME_FLAG_INTERLACED))
1076  put_symbol(c, state, 3, 0);
1077  else
1078  put_symbol(c, state, 1 + !(f->cur_enc_frame->flags & AV_FRAME_FLAG_TOP_FIELD_FIRST), 0);
1079  put_symbol(c, state, f->cur_enc_frame->sample_aspect_ratio.num, 0);
1080  put_symbol(c, state, f->cur_enc_frame->sample_aspect_ratio.den, 0);
1081  if (f->version > 3) {
1082  put_rac(c, state, sc->slice_coding_mode == 1);
1083  if (sc->slice_coding_mode == 1)
1085  put_symbol(c, state, sc->slice_coding_mode, 0);
1086  if (sc->slice_coding_mode != 1 && f->colorspace == 1) {
1087  put_symbol(c, state, sc->slice_rct_by_coef, 0);
1088  put_symbol(c, state, sc->slice_rct_ry_coef, 0);
1089  }
1090  put_symbol(c, state, sc->remap, 0);
1091  }
1092 }
1093 
1095  const uint8_t *src[3], const int stride[3], int w, int h)
1096 {
1097 #define NB_Y_COEFF 15
1098  static const int rct_y_coeff[15][2] = {
1099  {0, 0}, // 4G
1100  {1, 1}, // R + 2G + B
1101  {2, 2}, // 2R + 2B
1102  {0, 2}, // 2G + 2B
1103  {2, 0}, // 2R + 2G
1104  {4, 0}, // 4R
1105  {0, 4}, // 4B
1106 
1107  {0, 3}, // 1G + 3B
1108  {3, 0}, // 3R + 1G
1109  {3, 1}, // 3R + B
1110  {1, 3}, // R + 3B
1111  {1, 2}, // R + G + 2B
1112  {2, 1}, // 2R + G + B
1113  {0, 1}, // 3G + B
1114  {1, 0}, // R + 3G
1115  };
1116 
1117  int stat[NB_Y_COEFF] = {0};
1118  int x, y, i, p, best;
1119  int16_t *sample[3];
1120  int lbd = f->bits_per_raw_sample <= 8;
1121  int packed = !src[1];
1122  int transparency = f->transparency;
1123  int packed_size = (3 + transparency)*2;
1124 
1125  for (y = 0; y < h; y++) {
1126  int lastr=0, lastg=0, lastb=0;
1127  for (p = 0; p < 3; p++)
1128  sample[p] = sc->sample_buffer + p*w;
1129 
1130  for (x = 0; x < w; x++) {
1131  int b, g, r;
1132  int ab, ag, ar;
1133  if (lbd) {
1134  unsigned v = *((const uint32_t*)(src[0] + x*4 + stride[0]*y));
1135  b = v & 0xFF;
1136  g = (v >> 8) & 0xFF;
1137  r = (v >> 16) & 0xFF;
1138  } else if (packed) {
1139  const uint16_t *p = ((const uint16_t*)(src[0] + x*packed_size + stride[0]*y));
1140  r = p[0];
1141  g = p[1];
1142  b = p[2];
1143  } else if (f->use32bit || transparency) {
1144  g = *((const uint16_t *)(src[0] + x*2 + stride[0]*y));
1145  b = *((const uint16_t *)(src[1] + x*2 + stride[1]*y));
1146  r = *((const uint16_t *)(src[2] + x*2 + stride[2]*y));
1147  } else {
1148  b = *((const uint16_t*)(src[0] + x*2 + stride[0]*y));
1149  g = *((const uint16_t*)(src[1] + x*2 + stride[1]*y));
1150  r = *((const uint16_t*)(src[2] + x*2 + stride[2]*y));
1151  }
1152 
1153  ar = r - lastr;
1154  ag = g - lastg;
1155  ab = b - lastb;
1156  if (x && y) {
1157  int bg = ag - sample[0][x];
1158  int bb = ab - sample[1][x];
1159  int br = ar - sample[2][x];
1160 
1161  br -= bg;
1162  bb -= bg;
1163 
1164  for (i = 0; i<NB_Y_COEFF; i++) {
1165  stat[i] += FFABS(bg + ((br*rct_y_coeff[i][0] + bb*rct_y_coeff[i][1])>>2));
1166  }
1167 
1168  }
1169  sample[0][x] = ag;
1170  sample[1][x] = ab;
1171  sample[2][x] = ar;
1172 
1173  lastr = r;
1174  lastg = g;
1175  lastb = b;
1176  }
1177  }
1178 
1179  best = 0;
1180  for (i=1; i<NB_Y_COEFF; i++) {
1181  if (stat[i] < stat[best])
1182  best = i;
1183  }
1184 
1185  sc->slice_rct_by_coef = rct_y_coeff[best][1];
1186  sc->slice_rct_ry_coef = rct_y_coeff[best][0];
1187 }
1188 
1190 {
1191  int len = 1 << f->bits_per_raw_sample;
1192  int flip = sc->remap == 2 ? 0x7FFF : 0;
1193 
1194  for (int p= 0; p < 1 + 2*f->chroma_planes + f->transparency; p++) {
1195  int j = 0;
1196  int lu = 0;
1197  uint8_t state[2][32];
1198  int run = 0;
1199 
1200  memset(state, 128, sizeof(state));
1201  put_symbol(&sc->c, state[0], 0, 0);
1202  memset(state, 128, sizeof(state));
1203  for (int i= 0; i<len; i++) {
1204  int ri = i ^ ((i&0x8000) ? 0 : flip);
1205  int u = sc->fltmap[p][ri];
1206  sc->fltmap[p][ri] = j;
1207  j+= u;
1208 
1209  if (lu == u) {
1210  run ++;
1211  } else {
1212  put_symbol_inline(&sc->c, state[lu], run, 0, NULL, NULL);
1213  if (run == 0)
1214  lu = u;
1215  run = 0;
1216  }
1217  }
1218  if (run)
1219  put_symbol(&sc->c, state[lu], run, 0);
1220  sc->remap_count[p] = j;
1221  }
1222 }
1223 
1225  const uint8_t *src[4],
1226  int w, int h, const int stride[4])
1227 {
1228  int x, y;
1229  int transparency = f->transparency;
1230  int i = 0;
1231 
1232  for (y = 0; y < h; y++) {
1233  for (x = 0; x < w; x++) {
1234  int b, g, r, av_uninit(a);
1235 
1236  g = *((const uint32_t *)(src[0] + x*4 + stride[0]*y));
1237  b = *((const uint32_t *)(src[1] + x*4 + stride[1]*y));
1238  r = *((const uint32_t *)(src[2] + x*4 + stride[2]*y));
1239  if (transparency)
1240  a = *((const uint32_t *)(src[3] + x*4 + stride[3]*y));
1241 
1242  if (sc->remap == 2) {
1243 #define FLIP(f) (((f)&0x80000000) ? (f) : (f)^0x7FFFFFFF);
1244  g = FLIP(g);
1245  b = FLIP(b);
1246  r = FLIP(r);
1247  }
1248  // We cannot build a histogram as we do for 16bit, we need a bit of magic here
1249  // Its possible to reduce the memory needed at the cost of more dereferencing
1250  sc->unit[0][i].val = g;
1251  sc->unit[0][i].ndx = x + y*w;
1252 
1253  sc->unit[1][i].val = b;
1254  sc->unit[1][i].ndx = x + y*w;
1255 
1256  sc->unit[2][i].val = r;
1257  sc->unit[2][i].ndx = x + y*w;
1258 
1259  if (transparency) {
1260  sc->unit[3][i].val = a;
1261  sc->unit[3][i].ndx = x + y*w;
1262  }
1263  i++;
1264  }
1265  }
1266 
1267  //TODO switch to radix sort
1268 #define CMP(A,B) ((A)->val - (int64_t)(B)->val)
1269  AV_QSORT(sc->unit[0], i, struct Unit, CMP);
1270  AV_QSORT(sc->unit[1], i, struct Unit, CMP);
1271  AV_QSORT(sc->unit[2], i, struct Unit, CMP);
1272  if (transparency)
1273  AV_QSORT(sc->unit[3], i, struct Unit, CMP);
1274 }
1275 
1277  int p, int mul_count, int *mul_tab, int update, int final)
1278 {
1279  const int pixel_num = sc->slice_width * sc->slice_height;
1280  uint8_t state[2][3][32];
1281  int mul[4096+1];
1282  RangeCoder rc = sc->c;
1283  int lu = 0;
1284  int run = 0;
1285  int64_t last_val = -1;
1286  int compact_index = -1;
1287  int i = 0;
1288  int current_mul_index = -1;
1289  int run1final = 0;
1290  int run1start_i;
1291  int run1start_last_val;
1292  int run1start_mul_index;
1293 
1294  memcpy(mul, mul_tab, sizeof(*mul_tab)*(mul_count+1));
1295  memset(state, 128, sizeof(state));
1296  put_symbol(&rc, state[0][0], mul_count, 0);
1297  memset(state, 128, sizeof(state));
1298 
1299  for (; i < pixel_num+1; i++) {
1300  int current_mul = current_mul_index < 0 ? 1 : FFABS(mul[current_mul_index]);
1301  int64_t val;
1302  if (i == pixel_num) {
1303  if (last_val == 0xFFFFFFFF) {
1304  break;
1305  } else {
1306  val = last_val + ((1LL<<32) - last_val + current_mul - 1) / current_mul * current_mul;
1307  av_assert2(val >= (1LL<<32));
1308  val += lu * current_mul; //ensure a run1 ends
1309  }
1310  } else
1311  val = sc->unit[p][i].val;
1312 
1313  if (last_val != val) {
1314  int64_t delta = val - last_val;
1315  int64_t step = FFMAX(1, (delta + current_mul/2) / current_mul);
1316  av_assert2(last_val < val);
1317  av_assert2(current_mul > 0);
1318 
1319  delta -= step*current_mul;
1320  av_assert2(delta <= current_mul/2);
1321  av_assert2(delta > -current_mul);
1322 
1323  av_assert2(step > 0);
1324  if (lu) {
1325  if (!run) {
1326  run1start_i = i - 1;
1327  run1start_last_val = last_val;
1328  run1start_mul_index= current_mul_index;
1329  }
1330  if (step == 1) {
1331  if (run1final) {
1332  if (current_mul>1)
1333  put_symbol_inline(&rc, state[lu][1], delta, 1, NULL, NULL);
1334  }
1335  run ++;
1336  av_assert2(last_val + current_mul + delta == val);
1337  } else {
1338  if (run1final) {
1339  if (run == 0)
1340  lu ^= 1;
1341  i--; // we did not encode val so we need to backstep
1342  last_val += current_mul;
1343  } else {
1344  put_symbol_inline(&rc, state[lu][0], run, 0, NULL, NULL);
1345  i = run1start_i;
1346  last_val = run1start_last_val; // we could compute this instead of storing
1347  current_mul_index = run1start_mul_index;
1348  }
1349  run1final ^= 1;
1350 
1351  run = 0;
1352  continue;
1353  }
1354  } else {
1355  av_assert2(run == 0);
1356  av_assert2(run1final == 0);
1357  put_symbol_inline(&rc, state[lu][0], step - 1, 0, NULL, NULL);
1358 
1359  if (current_mul > 1)
1360  put_symbol_inline(&rc, state[lu][1], delta, 1, NULL, NULL);
1361  if (step == 1)
1362  lu ^= 1;
1363 
1364  av_assert2(last_val + step * current_mul + delta == val);
1365  }
1366  last_val = val;
1367  current_mul_index = ((last_val + 1) * mul_count) >> 32;
1368  if (!run || run1final) {
1369  av_assert2(mul[ current_mul_index ]);
1370  if (mul[ current_mul_index ] < 0) {
1371  av_assert2(i < pixel_num);
1372  mul[ current_mul_index ] *= -1;
1373  put_symbol_inline(&rc, state[0][2], mul[ current_mul_index ], 0, NULL, NULL);
1374  }
1375  if (i < pixel_num)
1376  compact_index ++;
1377  }
1378  }
1379  if (!run || run1final)
1380  if (final && i < pixel_num)
1381  sc->bitmap[p][sc->unit[p][i].ndx] = compact_index;
1382  }
1383 
1384  if (update) {
1385  sc->c = rc;
1386  sc->remap_count[p] = compact_index + 1;
1387  }
1388  return get_rac_count(&rc);
1389 }
1390 
1392  const uint8_t *src[4])
1393 {
1394  int pixel_num = sc->slice_width * sc->slice_height;
1395  const int max_log2_mul_count = ((int[]){ 1, 1, 1, 9, 9, 10})[f->remap_optimizer];
1396  const int log2_mul_count_step = ((int[]){ 1, 1, 1, 9, 9, 1})[f->remap_optimizer];
1397  const int max_log2_mul = ((int[]){ 1, 8, 8, 9, 22, 22})[f->remap_optimizer];
1398  const int log2_mul_step = ((int[]){ 1, 8, 1, 1, 1, 1})[f->remap_optimizer];
1399  const int bruteforce_count = ((int[]){ 0, 0, 0, 1, 1, 1})[f->remap_optimizer];
1400  const int stair_mode = ((int[]){ 0, 0, 0, 1, 0, 0})[f->remap_optimizer];
1401  const int magic_log2 = ((int[]){ 1, 1, 1, 1, 0, 0})[f->remap_optimizer];
1402 
1403  for (int p= 0; p < 1 + 2*f->chroma_planes + f->transparency; p++) {
1404  int best_log2_mul_count = 0;
1405  float score_sum[11] = {0};
1406  int mul_all[11][1025];
1407 
1408  for (int log2_mul_count= 0; log2_mul_count <= max_log2_mul_count; log2_mul_count += log2_mul_count_step) {
1409  float score_tab_all[1025][23] = {0};
1410  int64_t last_val = -1;
1411  int *mul_tab = mul_all[log2_mul_count];
1412  int last_mul_index = -1;
1413  int mul_count = 1 << log2_mul_count;
1414 
1415  score_sum[log2_mul_count] = 2 * log2_mul_count;
1416  if (magic_log2)
1417  score_sum[log2_mul_count] = av_float2int((float)mul_count * mul_count);
1418  for (int i= 0; i<pixel_num; i++) {
1419  int64_t val = sc->unit[p][i].val;
1420  int mul_index = (val + 1LL)*mul_count >> 32;
1421  if (val != last_val) {
1422  float *score_tab = score_tab_all[(last_val + 1LL)*mul_count >> 32];
1423  av_assert2(last_val < val);
1424  for(int si= 0; si <= max_log2_mul; si += log2_mul_step) {
1425  int64_t delta = val - last_val;
1426  int mul;
1427  int64_t cost;
1428 
1429  if (last_val < 0) {
1430  mul = 1;
1431  } else if (stair_mode && mul_count == 512 && si == max_log2_mul ) {
1432  if (mul_index >= 0x378/8 && mul_index <= 23 + 0x378/8) {
1433  mul = (0x800080 >> (mul_index - 0x378/8));
1434  } else
1435  mul = 1;
1436  } else {
1437  mul = (0x10001LL)<<si >> 16;
1438  }
1439 
1440  cost = FFMAX((delta + mul/2) / mul, 1);
1441  float score = 1;
1442  if (mul > 1) {
1443  score *= (fabs(delta - cost*mul)+1);
1444  if (mul_count > 1)
1445  score *= score;
1446  }
1447  score *= cost;
1448  score *= score;
1449  if (mul_index != last_mul_index)
1450  score *= mul;
1451  if (magic_log2) {
1452  score_tab[si] += av_float2int(score);
1453  } else
1454  score_tab[si] += log2f(score);
1455  }
1456  }
1457  last_val = val;
1458  last_mul_index = mul_index;
1459  }
1460  for(int i= 0; i<mul_count; i++) {
1461  int best_index = 0;
1462  float *score_tab = score_tab_all[i];
1463  for(int si= 0; si <= max_log2_mul; si += log2_mul_step) {
1464  if (score_tab[si] < score_tab[ best_index ])
1465  best_index = si;
1466  }
1467  if (stair_mode && mul_count == 512 && best_index == max_log2_mul ) {
1468  if (i >= 0x378/8 && i <= 23 + 0x378/8) {
1469  mul_tab[i] = -(0x800080 >> (i - 0x378/8));
1470  } else
1471  mul_tab[i] = -1;
1472  } else
1473  mul_tab[i] = -((0x10001LL)<<best_index >> 16);
1474  score_sum[log2_mul_count] += score_tab[ best_index ];
1475  }
1476  mul_tab[mul_count] = 1;
1477 
1478  if (bruteforce_count)
1479  score_sum[log2_mul_count] = encode_float32_remap_segment(sc, p, mul_count, mul_all[log2_mul_count], 0, 0);
1480 
1481  if (score_sum[log2_mul_count] < score_sum[best_log2_mul_count])
1482  best_log2_mul_count = log2_mul_count;
1483  }
1484 
1485  encode_float32_remap_segment(sc, p, 1<<best_log2_mul_count, mul_all[best_log2_mul_count], 1, 1);
1486  }
1487 }
1488 
1490  const uint8_t *src[4],
1491  int w, int h, const int stride[4], int ac)
1492 {
1493  int x, y, p, i;
1494  const int ring_size = f->context_model ? 3 : 2;
1495  int32_t *sample[4][3];
1496  const int pass1 = !!(f->avctx->flags & AV_CODEC_FLAG_PASS1);
1497  int bits[4], offset;
1498  int transparency = f->transparency;
1499 
1500  ff_ffv1_compute_bits_per_plane(f, sc, bits, &offset, NULL, f->bits_per_raw_sample);
1501 
1502  sc->run_index = 0;
1503 
1504  memset(RENAME(sc->sample_buffer), 0, ring_size * MAX_PLANES *
1505  (w + 6) * sizeof(*RENAME(sc->sample_buffer)));
1506 
1507  for (y = 0; y < h; y++) {
1508  for (i = 0; i < ring_size; i++)
1509  for (p = 0; p < MAX_PLANES; p++)
1510  sample[p][i]= RENAME(sc->sample_buffer) + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
1511 
1512  for (x = 0; x < w; x++) {
1513  int b, g, r, av_uninit(a);
1514  g = sc->bitmap[0][x + w*y];
1515  b = sc->bitmap[1][x + w*y];
1516  r = sc->bitmap[2][x + w*y];
1517  if (transparency)
1518  a = sc->bitmap[3][x + w*y];
1519 
1520  if (sc->slice_coding_mode != 1) {
1521  b -= g;
1522  r -= g;
1523  g += (b * sc->slice_rct_by_coef + r * sc->slice_rct_ry_coef) >> 2;
1524  b += offset;
1525  r += offset;
1526  }
1527 
1528  sample[0][0][x] = g;
1529  sample[1][0][x] = b;
1530  sample[2][0][x] = r;
1531  sample[3][0][x] = a;
1532  }
1533  for (p = 0; p < 3 + transparency; p++) {
1534  int ret;
1535  sample[p][0][-1] = sample[p][1][0 ];
1536  sample[p][1][ w] = sample[p][1][w-1];
1537  ret = encode_line32(f, sc, f->avctx, w, sample[p], (p + 1) / 2,
1538  bits[p], ac, pass1);
1539  if (ret < 0)
1540  return ret;
1541  }
1542  }
1543  return 0;
1544 }
1545 
1546 
1547 static int encode_slice(AVCodecContext *c, void *arg)
1548 {
1549  FFV1SliceContext *sc = arg;
1550  FFV1Context *f = c->priv_data;
1551  int width = sc->slice_width;
1552  int height = sc->slice_height;
1553  int x = sc->slice_x;
1554  int y = sc->slice_y;
1555  const AVFrame *const p = f->cur_enc_frame;
1556  const int ps = av_pix_fmt_desc_get(c->pix_fmt)->comp[0].step;
1557  int ret;
1558  RangeCoder c_bak = sc->c;
1559  const int chroma_width = AV_CEIL_RSHIFT(width, f->chroma_h_shift);
1560  const int chroma_height = AV_CEIL_RSHIFT(height, f->chroma_v_shift);
1561  const uint8_t *planes[4] = {p->data[0] + ps*x + y*p->linesize[0],
1562  p->data[1] ? p->data[1] + ps*x + y*p->linesize[1] : NULL,
1563  p->data[2] ? p->data[2] + ps*x + y*p->linesize[2] : NULL,
1564  p->data[3] ? p->data[3] + ps*x + y*p->linesize[3] : NULL};
1565  int ac = f->ac;
1566 
1567  sc->slice_coding_mode = 0;
1568  if (f->version > 3 && f->colorspace == 1) {
1570  } else {
1571  sc->slice_rct_by_coef = 1;
1572  sc->slice_rct_ry_coef = 1;
1573  }
1574 
1575 retry:
1576  if (f->key_frame)
1578  if (f->version > 2) {
1579  encode_slice_header(f, sc);
1580  }
1581 
1582  if (sc->remap) {
1583  //Both the 16bit and 32bit remap do exactly the same thing but with 16bits we can
1584  //Implement this using a "histogram" while for 32bit that would be gb sized, thus a more
1585  //complex implementation sorting pairs is used.
1586  if (f->bits_per_raw_sample != 32) {
1587  if (f->colorspace == 0 && c->pix_fmt != AV_PIX_FMT_YA8 && c->pix_fmt != AV_PIX_FMT_YAF16) {
1588  const int cx = x >> f->chroma_h_shift;
1589  const int cy = y >> f->chroma_v_shift;
1590 
1591  //TODO decide on the order for the encoded remaps and loads. with golomb rice it
1592  // easier to have all range coded ones together, otherwise it may be nicer to handle each plane as a whole?
1593 
1594  load_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 1);
1595 
1596  if (f->chroma_planes) {
1597  load_plane(f, sc, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1, 1);
1598  load_plane(f, sc, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 2, 1);
1599  }
1600  if (f->transparency)
1601  load_plane(f, sc, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 3, 1);
1602  } else if (c->pix_fmt == AV_PIX_FMT_YA8 || c->pix_fmt == AV_PIX_FMT_YAF16) {
1603  load_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 2);
1604  load_plane(f, sc, p->data[0] + (ps>>1) + ps*x + y*p->linesize[0], width, height, p->linesize[0], 1, 2);
1605  } else if (f->use32bit) {
1606  load_rgb_frame32(f, sc, planes, width, height, p->linesize);
1607  } else
1608  load_rgb_frame (f, sc, planes, width, height, p->linesize);
1609 
1611  } else {
1614  }
1615  }
1616 
1617  if (ac == AC_GOLOMB_RICE) {
1618  sc->ac_byte_count = f->version > 2 || (!x && !y) ? ff_rac_terminate(&sc->c, f->version > 2) : 0;
1619  init_put_bits(&sc->pb,
1620  sc->c.bytestream_start + sc->ac_byte_count,
1621  sc->c.bytestream_end - sc->c.bytestream_start - sc->ac_byte_count);
1622  }
1623 
1624  if (f->colorspace == 0 && c->pix_fmt != AV_PIX_FMT_YA8 && c->pix_fmt != AV_PIX_FMT_YAF16) {
1625  const int cx = x >> f->chroma_h_shift;
1626  const int cy = y >> f->chroma_v_shift;
1627 
1628  ret = encode_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 0, 1, ac);
1629 
1630  if (f->chroma_planes) {
1631  ret |= encode_plane(f, sc, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1, 1, 1, ac);
1632  ret |= encode_plane(f, sc, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1, 2, 1, ac);
1633  }
1634  if (f->transparency)
1635  ret |= encode_plane(f, sc, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2, 3, 1, ac);
1636  } else if (c->pix_fmt == AV_PIX_FMT_YA8 || c->pix_fmt == AV_PIX_FMT_YAF16) {
1637  ret = encode_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 0, 2, ac);
1638  ret |= encode_plane(f, sc, p->data[0] + (ps>>1) + ps*x + y*p->linesize[0], width, height, p->linesize[0], 1, 1, 2, ac);
1639  } else if (f->bits_per_raw_sample == 32) {
1641  } else if (f->use32bit) {
1642  ret = encode_rgb_frame32(f, sc, planes, width, height, p->linesize, ac);
1643  } else {
1644  ret = encode_rgb_frame(f, sc, planes, width, height, p->linesize, ac);
1645  }
1646 
1647  if (ac != AC_GOLOMB_RICE) {
1648  sc->ac_byte_count = ff_rac_terminate(&sc->c, 1);
1649  } else {
1650  flush_put_bits(&sc->pb); // FIXME: nicer padding
1651  sc->ac_byte_count += put_bytes_output(&sc->pb);
1652  }
1653 
1654  if (ret < 0) {
1655  av_assert0(sc->slice_coding_mode == 0);
1656  if (f->version < 4) {
1657  av_log(c, AV_LOG_ERROR, "Buffer too small\n");
1658  return ret;
1659  }
1660  av_log(c, AV_LOG_DEBUG, "Coding slice as PCM\n");
1661  ac = 1;
1662  sc->slice_coding_mode = 1;
1663  sc->c = c_bak;
1664  goto retry;
1665  }
1666 
1667  return 0;
1668 }
1669 
1671 {
1672  FFV1Context *f = avctx->priv_data;
1673 
1674  size_t maxsize = avctx->width*avctx->height * (1 + f->transparency);
1675  if (f->chroma_planes)
1676  maxsize += AV_CEIL_RSHIFT(avctx->width, f->chroma_h_shift) * AV_CEIL_RSHIFT(f->height, f->chroma_v_shift) * 2;
1677  maxsize += f->slice_count * 800; //for slice header
1678  if (f->version > 3) {
1679  maxsize *= f->bits_per_raw_sample + 1;
1680  if (f->remap_mode)
1681  maxsize += f->slice_count * 70000 * (1 + 2*f->chroma_planes + f->transparency);
1682  } else {
1683  maxsize += f->slice_count * 2 * (avctx->width + avctx->height); //for bug with slices that code some pixels more than once
1684  maxsize *= 8*(2*f->bits_per_raw_sample + 5);
1685  }
1686  maxsize >>= 3;
1687  maxsize += FF_INPUT_BUFFER_MIN_SIZE;
1688 
1689  return maxsize;
1690 }
1691 
1693  const AVFrame *pict, int *got_packet)
1694 {
1695  FFV1Context *f = avctx->priv_data;
1696  RangeCoder *const c = &f->slices[0].c;
1697  uint8_t keystate = 128;
1698  uint8_t *buf_p;
1699  int i, ret;
1700  int64_t maxsize;
1701 
1702  if(!pict) {
1703  if (avctx->flags & AV_CODEC_FLAG_PASS1) {
1704  int j, k, m;
1705  char *p = avctx->stats_out;
1706  char *end = p + STATS_OUT_SIZE;
1707 
1708  memset(f->rc_stat, 0, sizeof(f->rc_stat));
1709  for (i = 0; i < f->quant_table_count; i++)
1710  memset(f->rc_stat2[i], 0, f->context_count[i] * sizeof(*f->rc_stat2[i]));
1711 
1712  av_assert0(f->slice_count == f->max_slice_count);
1713  for (j = 0; j < f->slice_count; j++) {
1714  const FFV1SliceContext *sc = &f->slices[j];
1715  for (i = 0; i < 256; i++) {
1716  f->rc_stat[i][0] += sc->rc_stat[i][0];
1717  f->rc_stat[i][1] += sc->rc_stat[i][1];
1718  }
1719  for (i = 0; i < f->quant_table_count; i++) {
1720  for (k = 0; k < f->context_count[i]; k++)
1721  for (m = 0; m < 32; m++) {
1722  f->rc_stat2[i][k][m][0] += sc->rc_stat2[i][k][m][0];
1723  f->rc_stat2[i][k][m][1] += sc->rc_stat2[i][k][m][1];
1724  }
1725  }
1726  }
1727 
1728  for (j = 0; j < 256; j++) {
1729  snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
1730  f->rc_stat[j][0], f->rc_stat[j][1]);
1731  p += strlen(p);
1732  }
1733  snprintf(p, end - p, "\n");
1734 
1735  for (i = 0; i < f->quant_table_count; i++) {
1736  for (j = 0; j < f->context_count[i]; j++)
1737  for (m = 0; m < 32; m++) {
1738  snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
1739  f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
1740  p += strlen(p);
1741  }
1742  }
1743  snprintf(p, end - p, "%d\n", f->gob_count);
1744  }
1745  return 0;
1746  }
1747 
1748  /* Maximum packet size */
1749  maxsize = ff_ffv1_encode_buffer_size(avctx);
1750 
1751  if (maxsize > INT_MAX - AV_INPUT_BUFFER_PADDING_SIZE - 32) {
1752  av_log(avctx, AV_LOG_WARNING, "Cannot allocate worst case packet size, the encoding could fail\n");
1753  maxsize = INT_MAX - AV_INPUT_BUFFER_PADDING_SIZE - 32;
1754  }
1755 
1756  if ((ret = ff_alloc_packet(avctx, pkt, maxsize)) < 0)
1757  return ret;
1758 
1760  ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
1761 
1762  f->cur_enc_frame = pict;
1763 
1764  if (avctx->gop_size == 0 || f->picture_number % avctx->gop_size == 0) {
1765  put_rac(c, &keystate, 1);
1766  f->key_frame = 1;
1767  f->gob_count++;
1768  write_header(f);
1769  } else {
1770  put_rac(c, &keystate, 0);
1771  f->key_frame = 0;
1772  }
1773 
1774  if (f->ac == AC_RANGE_CUSTOM_TAB) {
1775  int i;
1776  for (i = 1; i < 256; i++) {
1777  c->one_state[i] = f->state_transition[i];
1778  c->zero_state[256 - i] = 256 - c->one_state[i];
1779  }
1780  }
1781 
1782  for (i = 0; i < f->slice_count; i++) {
1783  FFV1SliceContext *sc = &f->slices[i];
1784  uint8_t *start = pkt->data + pkt->size * (int64_t)i / f->slice_count;
1785  int len = pkt->size / f->slice_count;
1786  if (i) {
1787  ff_init_range_encoder(&sc->c, start, len);
1788  } else {
1791  sc->c.bytestream_end = sc->c.bytestream_start + len;
1792  }
1793  }
1794  avctx->execute(avctx, encode_slice, f->slices, NULL,
1795  f->slice_count, sizeof(*f->slices));
1796 
1797  buf_p = pkt->data;
1798  for (i = 0; i < f->slice_count; i++) {
1799  FFV1SliceContext *sc = &f->slices[i];
1800  int bytes = sc->ac_byte_count;
1801  if (i > 0 || f->version > 2) {
1802  av_assert0(bytes < pkt->size / f->slice_count);
1803  memmove(buf_p, sc->c.bytestream_start, bytes);
1804  av_assert0(bytes < (1 << 24));
1805  AV_WB24(buf_p + bytes, bytes);
1806  bytes += 3;
1807  }
1808  if (f->ec) {
1809  unsigned v;
1810  buf_p[bytes++] = 0;
1811  v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), f->crcref, buf_p, bytes) ^ (f->crcref ? 0x8CD88196 : 0);
1812  AV_WL32(buf_p + bytes, v);
1813  bytes += 4;
1814  }
1815  buf_p += bytes;
1816  }
1817 
1818  if (avctx->flags & AV_CODEC_FLAG_PASS1)
1819  avctx->stats_out[0] = '\0';
1820 
1821  f->picture_number++;
1822  pkt->size = buf_p - pkt->data;
1823  pkt->flags |= AV_PKT_FLAG_KEY * f->key_frame;
1824  *got_packet = 1;
1825 
1826  return 0;
1827 }
1828 
1830 {
1831  FFV1Context *const s = avctx->priv_data;
1832 
1833  for (int j = 0; j < s->max_slice_count; j++) {
1834  FFV1SliceContext *sc = &s->slices[j];
1835 
1836  for(int p = 0; p<4; p++) {
1837  av_freep(&sc->unit[p]);
1838  av_freep(&sc->bitmap[p]);
1839  }
1840  }
1841 
1842  av_freep(&avctx->stats_out);
1843  ff_ffv1_close(s);
1844 
1845  return 0;
1846 }
1847 
1848 #define OFFSET(x) offsetof(FFV1Context, x)
1849 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1850 static const AVOption options[] = {
1851  { "slicecrc", "Protect slices with CRCs", OFFSET(ec), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 2, VE },
1852  { "coder", "Coder type", OFFSET(ac), AV_OPT_TYPE_INT,
1853  { .i64 = 0 }, -2, 2, VE, .unit = "coder" },
1854  { "rice", "Golomb rice", 0, AV_OPT_TYPE_CONST,
1855  { .i64 = AC_GOLOMB_RICE }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1856  { "range_def", "Range with default table", 0, AV_OPT_TYPE_CONST,
1857  { .i64 = AC_RANGE_DEFAULT_TAB_FORCE }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1858  { "range_tab", "Range with custom table", 0, AV_OPT_TYPE_CONST,
1859  { .i64 = AC_RANGE_CUSTOM_TAB }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1860  { "ac", "Range with custom table (the ac option exists for compatibility and is deprecated)", 0, AV_OPT_TYPE_CONST,
1861  { .i64 = 1 }, INT_MIN, INT_MAX, VE, .unit = "coder" },
1862  { "context", "Context model", OFFSET(context_model), AV_OPT_TYPE_INT,
1863  { .i64 = 0 }, 0, 1, VE },
1864  { "qtable", "Quantization table", OFFSET(qtable), AV_OPT_TYPE_INT,
1865  { .i64 = -1 }, -1, 2, VE , .unit = "qtable"},
1866  { "default", NULL, 0, AV_OPT_TYPE_CONST,
1867  { .i64 = QTABLE_DEFAULT }, INT_MIN, INT_MAX, VE, .unit = "qtable" },
1868  { "8bit", NULL, 0, AV_OPT_TYPE_CONST,
1869  { .i64 = QTABLE_8BIT }, INT_MIN, INT_MAX, VE, .unit = "qtable" },
1870  { "greater8bit", NULL, 0, AV_OPT_TYPE_CONST,
1871  { .i64 = QTABLE_GT8BIT }, INT_MIN, INT_MAX, VE, .unit = "qtable" },
1872  { "remap_mode", "Remap Mode", OFFSET(remap_mode), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 2, VE, .unit = "remap_mode" },
1873  { "auto", "Automatic", 0, AV_OPT_TYPE_CONST,
1874  { .i64 = -1 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1875  { "off", "Disabled", 0, AV_OPT_TYPE_CONST,
1876  { .i64 = 0 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1877  { "dualrle", "Dual RLE", 0, AV_OPT_TYPE_CONST,
1878  { .i64 = 1 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1879  { "flipdualrle", "Dual RLE", 0, AV_OPT_TYPE_CONST,
1880  { .i64 = 2 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
1881  { "remap_optimizer", "Remap Optimizer", OFFSET(remap_optimizer), AV_OPT_TYPE_INT, { .i64 = 3 }, 0, 5, VE, .unit = "remap_optimizer" },
1882 
1883  { NULL }
1884 };
1885 
1886 static const AVClass ffv1_class = {
1887  .class_name = "ffv1 encoder",
1888  .item_name = av_default_item_name,
1889  .option = options,
1890  .version = LIBAVUTIL_VERSION_INT,
1891 };
1892 
1894  .p.name = "ffv1",
1895  CODEC_LONG_NAME("FFmpeg video codec #1"),
1896  .p.type = AVMEDIA_TYPE_VIDEO,
1897  .p.id = AV_CODEC_ID_FFV1,
1898  .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
1901  .priv_data_size = sizeof(FFV1Context),
1904  .close = encode_close,
1905  CODEC_PIXFMTS(
1929  .color_ranges = AVCOL_RANGE_MPEG,
1930  .p.priv_class = &ffv1_class,
1932 };
load_rgb_frame
static void RENAME() load_rgb_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4])
Definition: ffv1enc_template.c:133
AV_PIX_FMT_YUVA422P16
#define AV_PIX_FMT_YUVA422P16
Definition: pixfmt.h:579
set_micro_version
static void set_micro_version(FFV1Context *f)
Definition: ffv1enc.c:429
CODEC_PIXFMTS
#define CODEC_PIXFMTS(...)
Definition: codec_internal.h:386
AV_PIX_FMT_GBRAP16
#define AV_PIX_FMT_GBRAP16
Definition: pixfmt.h:551
encode_init_internal
static av_cold int encode_init_internal(AVCodecContext *avctx)
Definition: ffv1enc.c:964
AV_LOG_WARNING
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:215
FFV1SliceContext::slice_height
int slice_height
Definition: ffv1.h:78
AVPixelFormat
AVPixelFormat
Pixel format.
Definition: pixfmt.h:71
ff_ffv1_encode_determine_slices
int ff_ffv1_encode_determine_slices(AVCodecContext *avctx)
Definition: ffv1enc.c:564
encode_line
static av_always_inline int RENAME() encode_line(FFV1Context *f, FFV1SliceContext *sc, void *logctx, int w, TYPE *sample[3], int plane_index, int bits, int ac, int pass1)
Definition: ffv1enc_template.c:26
av_clip
#define av_clip
Definition: common.h:100
update_vlc_state
static void update_vlc_state(VlcState *const state, const int v)
Definition: ffv1.h:222
FF_CODEC_CAP_INIT_CLEANUP
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: codec_internal.h:42
r
const char * r
Definition: vf_curves.c:127
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
AV_PIX_FMT_YA8
@ AV_PIX_FMT_YA8
8 bits gray, 8 bits alpha
Definition: pixfmt.h:140
AV_WL32
#define AV_WL32(p, v)
Definition: intreadwrite.h:422
put_bytes_output
static int put_bytes_output(const PutBitContext *s)
Definition: put_bits.h:89
encode_float32_remap
static void encode_float32_remap(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4])
Definition: ffv1enc.c:1391
u
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:251
log2f
#define log2f(x)
Definition: libm.h:411
av_pix_fmt_desc_get
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:3341
FFV1SliceContext::plane
PlaneContext * plane
Definition: ffv1.h:90
FF_CODEC_CAP_EOF_FLUSH
#define FF_CODEC_CAP_EOF_FLUSH
The encoder has AV_CODEC_CAP_DELAY set, but does not actually have delay - it only wants to be flushe...
Definition: codec_internal.h:89
int64_t
long long int64_t
Definition: coverity.c:34
put_symbol_inline
static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2])
Definition: ffv1enc.c:185
init_put_bits
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:62
AV_PIX_FMT_FLAG_FLOAT
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
Definition: pixdesc.h:158
AV_PIX_FMT_YUVA422P9
#define AV_PIX_FMT_YUVA422P9
Definition: pixfmt.h:571
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:410
pixdesc.h
step
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
Definition: rate_distortion.txt:58
AV_PIX_FMT_YUVA420P16
#define AV_PIX_FMT_YUVA420P16
Definition: pixfmt.h:578
w
uint8_t w
Definition: llviddspenc.c:38
AC_RANGE_DEFAULT_TAB_FORCE
#define AC_RANGE_DEFAULT_TAB_FORCE
Definition: ffv1.h:55
AVPacket::data
uint8_t * data
Definition: packet.h:535
AV_PIX_FMT_YUVA420P10
#define AV_PIX_FMT_YUVA420P10
Definition: pixfmt.h:573
AVOption
AVOption.
Definition: opt.h:429
encode.h
b
#define b
Definition: input.c:42
MAX_QUANT_TABLE_SIZE
#define MAX_QUANT_TABLE_SIZE
Definition: ffv1.h:48
rangecoder.h
AVComponentDescriptor::step
int step
Number of elements between 2 horizontally consecutive pixels.
Definition: pixdesc.h:40
AV_PIX_FMT_YUV420P10
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:528
ff_ffv1_write_extradata
av_cold int ff_ffv1_write_extradata(AVCodecContext *avctx)
Definition: ffv1enc.c:445
FFCodec
Definition: codec_internal.h:127
FFV1SliceContext::pb
PutBitContext pb
Definition: ffv1.h:91
RangeCoder::bytestream_end
uint8_t * bytestream_end
Definition: rangecoder.h:44
contains_non_128
static int contains_non_128(uint8_t(*initial_state)[CONTEXT_SIZE], int nb_contexts)
Definition: ffv1enc.c:370
AV_PIX_FMT_YUV440P
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:106
FF_COMPLIANCE_EXPERIMENTAL
#define FF_COMPLIANCE_EXPERIMENTAL
Allow nonstandardized experimental things.
Definition: defs.h:62
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
av_float2int
static av_always_inline uint32_t av_float2int(float f)
Reinterpret a float as a 32-bit integer.
Definition: intfloat.h:50
AC_RANGE_CUSTOM_TAB
#define AC_RANGE_CUSTOM_TAB
Definition: ffv1.h:54
AV_PIX_FMT_YUVA422P10
#define AV_PIX_FMT_YUVA422P10
Definition: pixfmt.h:574
ring_size
static int ring_size(RingBuffer *ring)
Definition: async.c:105
AV_PKT_FLAG_KEY
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: packet.h:590
FF_INPUT_BUFFER_MIN_SIZE
#define FF_INPUT_BUFFER_MIN_SIZE
Used by some encoders as upper bound for the length of headers.
Definition: encode.h:33
FFV1SliceContext::slice_x
int slice_x
Definition: ffv1.h:79
put_symbol
static av_noinline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed)
Definition: ffv1enc.c:233
ff_ffv1_clear_slice_state
void ff_ffv1_clear_slice_state(const FFV1Context *f, FFV1SliceContext *sc)
Definition: ffv1.c:198
AV_PIX_FMT_GRAY9
#define AV_PIX_FMT_GRAY9
Definition: pixfmt.h:507
AVFrame::data
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:431
av_malloc
#define av_malloc(s)
Definition: tableprint_vlc.h:31
AV_FRAME_FLAG_TOP_FIELD_FIRST
#define AV_FRAME_FLAG_TOP_FIELD_FIRST
A flag to mark frames where the top field is displayed first if the content is interlaced.
Definition: frame.h:638
crc.h
state
static struct @488 state
ff_ffv1_init_slices_state
av_cold int ff_ffv1_init_slices_state(FFV1Context *f)
Definition: ffv1.c:110
AV_PIX_FMT_YUVA420P9
#define AV_PIX_FMT_YUVA420P9
Definition: pixfmt.h:570
write_quant_tables
static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][MAX_QUANT_TABLE_SIZE])
Definition: ffv1enc.c:362
quant11
static const int8_t quant11[256]
Definition: ffv1enc.c:102
load_plane
static void load_plane(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src, int w, int h, int stride, int remap_index, int pixel_stride)
Definition: ffv1enc.c:323
FFCodec::p
AVCodec p
The public AVCodec.
Definition: codec_internal.h:131
AV_PIX_FMT_GBRP14
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:546
ff_init_range_encoder
av_cold void ff_init_range_encoder(RangeCoder *c, uint8_t *buf, int buf_size)
Definition: rangecoder.c:42
AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:544
AV_PIX_FMT_YUVA444P16
#define AV_PIX_FMT_YUVA444P16
Definition: pixfmt.h:580
AV_PIX_FMT_YUV422P9
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:526
encode_slice
static int encode_slice(AVCodecContext *c, void *arg)
Definition: ffv1enc.c:1547
AVCodecContext::flags
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:488
val
static double val(void *priv, double ch)
Definition: aeval.c:77
av_pix_fmt_get_chroma_sub_sample
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:3369
AV_PIX_FMT_GRAYF16
#define AV_PIX_FMT_GRAYF16
Definition: pixfmt.h:564
av_noinline
#define av_noinline
Definition: attributes.h:72
update
static av_always_inline void update(SilenceDetectContext *s, AVFrame *insamples, int is_silence, int current_sample, int64_t nb_samples_notify, AVRational time_base)
Definition: af_silencedetect.c:78
NB_Y_COEFF
#define NB_Y_COEFF
MAX_SLICES
#define MAX_SLICES
Definition: d3d12va_hevc.c:33
CONTEXT_SIZE
#define CONTEXT_SIZE
Definition: ffv1.h:45
AV_PIX_FMT_GRAY16
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:511
FF_CODEC_ENCODE_CB
#define FF_CODEC_ENCODE_CB(func)
Definition: codec_internal.h:353
PlaneContext::context_count
int context_count
Definition: ffv1.h:66
AV_PIX_FMT_YUV444P10
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:531
avassert.h
put_golomb.h
exp golomb vlc writing stuff
pkt
AVPacket * pkt
Definition: movenc.c:60
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:209
av_cold
#define av_cold
Definition: attributes.h:90
AV_PIX_FMT_YUV422P16
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:540
FFV1SliceContext::sample_buffer
int16_t * sample_buffer
Definition: ffv1.h:74
AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRAP10
Definition: pixfmt.h:548
s
#define s(width, name)
Definition: cbs_vp9.c:198
MAX_PLANES
#define MAX_PLANES
Definition: ffv1.h:44
AVCodecContext::stats_in
char * stats_in
pass2 encoding statistics input buffer Concatenated stuff from stats_out of pass1 should be placed he...
Definition: avcodec.h:1320
AV_PIX_FMT_GBRAP14
#define AV_PIX_FMT_GBRAP14
Definition: pixfmt.h:550
AV_PIX_FMT_GBRAP12
#define AV_PIX_FMT_GBRAP12
Definition: pixfmt.h:549
AV_PIX_FMT_YUVA420P
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:108
AV_PIX_FMT_YUV444P16
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:541
AV_CEIL_RSHIFT
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:60
g
const char * g
Definition: vf_curves.c:128
pix_fmt
static enum AVPixelFormat pix_fmt
Definition: demux_decode.c:41
FLIP
#define FLIP(f)
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
#define AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE
This encoder can reorder user opaque values from input AVFrames and return them with corresponding ou...
Definition: codec.h:144
bits
uint8_t bits
Definition: vp3data.h:128
AC_RANGE_DEFAULT_TAB
#define AC_RANGE_DEFAULT_TAB
Definition: ffv1.h:53
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:40
quant5
static const int8_t quant5[256]
Definition: ffv1enc.c:64
AV_PIX_FMT_YUVA444P12
#define AV_PIX_FMT_YUVA444P12
Definition: pixfmt.h:577
AVCodecContext::bits_per_raw_sample
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:1553
AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:525
AV_LOG_DEBUG
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:230
AV_PIX_FMT_YUV420P16
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:539
AV_PIX_FMT_FLAG_ALPHA
#define AV_PIX_FMT_FLAG_ALPHA
The pixel format has an alpha channel.
Definition: pixdesc.h:147
FFV1SliceContext::rc_stat2
uint64_t(*[MAX_QUANT_TABLES] rc_stat2)[32][2]
Definition: ffv1.h:106
encode_float32_remap_segment
static int encode_float32_remap_segment(FFV1SliceContext *sc, int p, int mul_count, int *mul_tab, int update, int final)
Definition: ffv1enc.c:1276
AV_PIX_FMT_GRAY14
#define AV_PIX_FMT_GRAY14
Definition: pixfmt.h:510
fold
static av_always_inline int fold(int diff, int bits)
Definition: ffv1.h:211
ff_ffv1_encode_setup_plane_info
av_cold int ff_ffv1_encode_setup_plane_info(AVCodecContext *avctx, enum AVPixelFormat pix_fmt)
Definition: ffv1enc.c:797
AV_PIX_FMT_YUV420P
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:73
PutBitContext
Definition: put_bits.h:50
CODEC_LONG_NAME
#define CODEC_LONG_NAME(str)
Definition: codec_internal.h:326
sort_stt
static int sort_stt(FFV1Context *s, uint8_t stt[256])
Definition: ffv1enc.c:515
ver2_state
static const uint8_t ver2_state[256]
Definition: ffv1enc.c:121
arg
const char * arg
Definition: jacosubdec.c:67
FFABS
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:74
AV_PIX_FMT_GRAY10
#define AV_PIX_FMT_GRAY10
Definition: pixfmt.h:508
if
if(ret)
Definition: filter_design.txt:179
encode_frame
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet)
Definition: ffv1enc.c:1692
encode_close
static av_cold int encode_close(AVCodecContext *avctx)
Definition: ffv1enc.c:1829
quant_table
static const int16_t quant_table[64]
Definition: intrax8.c:511
AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:547
AV_PIX_FMT_RGBA64
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:518
LIBAVUTIL_VERSION_INT
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
FFV1SliceContext::sx
int sx
Definition: ffv1.h:81
ff_need_new_slices
int ff_need_new_slices(int width, int num_h_slices, int chroma_shift)
Definition: ffv1.c:120
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:75
fabs
static __device__ float fabs(float a)
Definition: cuda_runtime.h:182
NULL
#define NULL
Definition: coverity.c:32
AC_GOLOMB_RICE
#define AC_GOLOMB_RICE
Definition: ffv1.h:52
CMP
#define CMP(A, B)
run
uint8_t run
Definition: svq3.c:204
FFV1SliceContext::unit
struct FFV1SliceContext::Unit * unit[4]
fs
#define fs(width, name, subs,...)
Definition: cbs_vp9.c:200
FFV1SliceContext::Unit::val
uint32_t val
Definition: ffv1.h:117
ff_rac_terminate
int ff_rac_terminate(RangeCoder *c, int version)
Terminates the range coder.
Definition: rangecoder.c:109
av_default_item_name
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:239
AV_PIX_FMT_YUV440P10
#define AV_PIX_FMT_YUV440P10
Definition: pixfmt.h:530
options
Definition: swscale.c:43
PlaneContext
Definition: ffv1.h:64
AV_PIX_FMT_YUV422P10
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:529
AV_PIX_FMT_GRAY8
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Definition: pixfmt.h:81
AV_PIX_FMT_GBRP9
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:543
AVCodecContext::level
int level
Encoding level descriptor.
Definition: avcodec.h:1628
AV_PIX_FMT_GBRPF16
#define AV_PIX_FMT_GBRPF16
Definition: pixfmt.h:559
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
VlcState
Definition: ffv1.h:57
VE
#define VE
Definition: ffv1enc.c:1849
ff_dlog
#define ff_dlog(a,...)
Definition: tableprint_vlc.h:28
FFV1SliceContext::slice_width
int slice_width
Definition: ffv1.h:77
options
static const AVOption options[]
Definition: ffv1enc.c:1850
AVCodecContext::stats_out
char * stats_out
pass1 encoding statistics output buffer
Definition: avcodec.h:1312
AV_CODEC_ID_FFV1
@ AV_CODEC_ID_FFV1
Definition: codec_id.h:85
qsort.h
f
f
Definition: af_crystalizer.c:122
init
int(* init)(AVBSFContext *ctx)
Definition: dts2pts.c:368
AV_CODEC_CAP_DR1
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
choose_rct_params
static void choose_rct_params(const FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[3], const int stride[3], int w, int h)
Definition: ffv1enc.c:1094
flip
static void flip(AVCodecContext *avctx, AVFrame *frame)
Definition: rawdec.c:131
AVPacket::size
int size
Definition: packet.h:536
AVCodecContext::gop_size
int gop_size
the number of pictures in a group of pictures, or 0 for intra_only
Definition: avcodec.h:1005
height
#define height
Definition: dsp.h:85
FFV1SliceContext::bitmap
uint32_t * bitmap[4]
Definition: ffv1.h:111
codec_internal.h
quant9_10bit
static const int8_t quant9_10bit[256]
Definition: ffv1enc.c:83
for
for(k=2;k<=8;++k)
Definition: h264pred_template.c:424
print
static void print(AVTreeNode *t, int depth)
Definition: tree.c:45
AV_PIX_FMT_GBRPF32
#define AV_PIX_FMT_GBRPF32
Definition: pixfmt.h:561
AV_PIX_FMT_YUV422P12
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:533
sample
#define sample
Definition: flacdsp_template.c:44
AV_PIX_FMT_RGB48
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:514
size
int size
Definition: twinvq_data.h:10344
ff_build_rac_states
void ff_build_rac_states(RangeCoder *c, int factor, int max_p)
Definition: rangecoder.c:68
planes
static const struct @489 planes[]
STATS_OUT_SIZE
#define STATS_OUT_SIZE
AV_PIX_FMT_YUV444P12
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:535
AV_WB24
#define AV_WB24(p, d)
Definition: intreadwrite.h:446
encode_plane
static int encode_plane(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src, int w, int h, int stride, int plane_index, int remap_index, int pixel_stride, int ac)
Definition: ffv1enc.c:274
RangeCoder::bytestream
uint8_t * bytestream
Definition: rangecoder.h:43
AV_CODEC_FLAG_PASS2
#define AV_CODEC_FLAG_PASS2
Use internal 2pass ratecontrol in second pass mode.
Definition: avcodec.h:294
AV_PIX_FMT_RGB32
#define AV_PIX_FMT_RGB32
Definition: pixfmt.h:500
a
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:41
AV_PIX_FMT_YUVA444P
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:174
FFV1SliceContext::slice_rct_by_coef
int slice_rct_by_coef
Definition: ffv1.h:85
av_crc_get_table
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:374
AV_CODEC_CAP_SLICE_THREADS
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: codec.h:99
AV_PIX_FMT_YUVA444P10
#define AV_PIX_FMT_YUVA444P10
Definition: pixfmt.h:575
offset
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
Definition: writing_filters.txt:86
find_best_state
static void find_best_state(uint8_t best_state[256][256], const uint8_t one_state[256])
Definition: ffv1enc.c:140
attributes.h
FFV1SliceContext::rc_stat
uint64_t rc_stat[256][2]
Definition: ffv1.h:105
AVPacket::flags
int flags
A combination of AV_PKT_FLAG values.
Definition: packet.h:541
PlaneContext::quant_table_index
int quant_table_index
Definition: ffv1.h:65
AV_LOG_INFO
#define AV_LOG_INFO
Standard information.
Definition: log.h:220
FFV1SliceContext::c
RangeCoder c
Definition: ffv1.h:92
put_vlc_symbol
static void put_vlc_symbol(PutBitContext *pb, VlcState *const state, int v, int bits)
Definition: ffv1enc.c:240
av_assert2
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:67
ffv1_class
static const AVClass ffv1_class
Definition: ffv1enc.c:1886
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:256
code
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
Definition: filter_design.txt:178
AV_QSORT
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
Definition: qsort.h:33
round
static av_always_inline av_const double round(double x)
Definition: libm.h:446
FFV1SliceContext::slice_rct_ry_coef
int slice_rct_ry_coef
Definition: ffv1.h:86
av_flatten
#define av_flatten
Definition: attributes.h:96
AV_PIX_FMT_GBRP12
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:545
av_malloc_array
#define av_malloc_array(a, b)
Definition: tableprint_vlc.h:32
FFV1SliceContext::remap_count
int remap_count[4]
Definition: ffv1.h:109
encode_rgb_frame
static int RENAME() encode_rgb_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4], int ac)
Definition: ffv1enc_template.c:168
delta
float delta
Definition: vorbis_enc_data.h:430
av_always_inline
#define av_always_inline
Definition: attributes.h:49
ff_ffv1_common_init
av_cold int ff_ffv1_common_init(AVCodecContext *avctx, FFV1Context *s)
Definition: ffv1.c:36
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
ffv1.h
av_mallocz
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:256
AVCodec::name
const char * name
Name of the codec implementation.
Definition: codec.h:179
FFV1SliceContext
Definition: ffv1.h:73
len
int len
Definition: vorbis_enc_data.h:426
QTABLE_8BIT
@ QTABLE_8BIT
Definition: ffv1enc.h:30
AV_CRC_32_IEEE
@ AV_CRC_32_IEEE
Definition: crc.h:52
AVCodecContext::height
int height
Definition: avcodec.h:592
AVCodecContext::pix_fmt
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:631
write_quant_table
static void write_quant_table(RangeCoder *c, int16_t *quant_table)
Definition: ffv1enc.c:347
AV_FRAME_FLAG_INTERLACED
#define AV_FRAME_FLAG_INTERLACED
A flag to mark frames whose content is interlaced.
Definition: frame.h:633
AVCOL_RANGE_MPEG
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
Definition: pixfmt.h:733
AV_PIX_FMT_YUV444P9
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:527
load_rgb_float32_frame
static void load_rgb_float32_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4])
Definition: ffv1enc.c:1224
MAX_CONTEXT_INPUTS
#define MAX_CONTEXT_INPUTS
Definition: ffv1.h:50
log2
#define log2(x)
Definition: libm.h:406
avcodec.h
stride
#define stride
Definition: h264pred_template.c:536
FFV1SliceContext::fltmap
uint16_t * fltmap[4]
Definition: ffv1.h:112
AV_PIX_FMT_YAF16
#define AV_PIX_FMT_YAF16
Definition: pixfmt.h:567
QTABLE_GT8BIT
@ QTABLE_GT8BIT
Definition: ffv1enc.h:31
av_uninit
#define av_uninit(x)
Definition: attributes.h:154
ret
ret
Definition: filter_design.txt:187
pred
static const float pred[4]
Definition: siprdata.h:259
FFSWAP
#define FFSWAP(type, a, b)
Definition: macros.h:52
AVClass::class_name
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:80
ff_ffv1_encode_buffer_size
size_t ff_ffv1_encode_buffer_size(AVCodecContext *avctx)
Definition: ffv1enc.c:1670
AV_PIX_FMT_0RGB32
#define AV_PIX_FMT_0RGB32
Definition: pixfmt.h:504
quant5_10bit
static const int8_t quant5_10bit[256]
Definition: ffv1enc.c:45
FFV1SliceContext::slice_y
int slice_y
Definition: ffv1.h:80
AVCodecContext::strict_std_compliance
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
Definition: avcodec.h:1357
AV_PIX_FMT_YUVA444P9
#define AV_PIX_FMT_YUVA444P9
Definition: pixfmt.h:572
FFV1SliceContext::Unit::ndx
uint32_t ndx
Definition: ffv1.h:118
set_sr_golomb
static void set_sr_golomb(PutBitContext *pb, int i, int k, int limit, int esc_len)
write signed golomb rice code (ffv1).
Definition: put_golomb.h:143
ff_ffv1_close
av_cold void ff_ffv1_close(FFV1Context *s)
Definition: ffv1.c:264
AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:532
AV_INPUT_BUFFER_PADDING_SIZE
#define AV_INPUT_BUFFER_PADDING_SIZE
Definition: defs.h:40
put_rac
#define put_rac(C, S, B)
U
#define U(x)
Definition: vpx_arith.h:37
AV_PIX_FMT_YUV422P14
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:537
ff_ffv1_allocate_initial_states
int ff_ffv1_allocate_initial_states(FFV1Context *f)
Definition: ffv1.c:183
AVCodecContext
main external API structure.
Definition: avcodec.h:431
RangeCoder::bytestream_start
uint8_t * bytestream_start
Definition: rangecoder.h:42
AVCodecContext::execute
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:1591
av_crc
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:392
AV_PIX_FMT_YUVA422P12
#define AV_PIX_FMT_YUVA422P12
Definition: pixfmt.h:576
OFFSET
#define OFFSET(x)
Definition: ffv1enc.c:1848
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Underlying C type is int.
Definition: opt.h:259
AV_PIX_FMT_GBRAPF32
#define AV_PIX_FMT_GBRAPF32
Definition: pixfmt.h:562
FFV1SliceContext::remap
int remap
Definition: ffv1.h:87
AV_PIX_FMT_GBRAPF16
#define AV_PIX_FMT_GBRAPF16
Definition: pixfmt.h:560
AVPixFmtDescriptor::comp
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:105
get_rac_count
static int get_rac_count(RangeCoder *c)
Definition: rangecoder.h:79
AV_CODEC_CAP_DELAY
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: codec.h:76
FFV1SliceContext::sy
int sy
Definition: ffv1.h:81
ffv1enc.h
COST2
#define COST2(old, new)
av_clip_uint8
#define av_clip_uint8
Definition: common.h:106
AV_PIX_FMT_YUV444P
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:78
ffv1enc_template.c
desc
const char * desc
Definition: libsvtav1.c:79
AVMEDIA_TYPE_VIDEO
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
AV_PIX_FMT_YUV422P
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:77
mem.h
flush_put_bits
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:143
ff_ffv1_encode_init
av_cold int ff_ffv1_encode_init(AVCodecContext *avctx)
Definition: ffv1enc.c:599
AVPixFmtDescriptor
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:69
FFV1Context
Definition: ffv1.h:122
QTABLE_DEFAULT
@ QTABLE_DEFAULT
Definition: ffv1enc.h:29
AVCodecContext::slices
int slices
Number of slices.
Definition: avcodec.h:1021
AVPacket
This structure stores compressed data.
Definition: packet.h:512
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:458
FFV1SliceContext::run_index
int run_index
Definition: ffv1.h:83
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:35
AV_PIX_FMT_YUV411P
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:80
AVCodecContext::width
int width
picture width / height.
Definition: avcodec.h:592
ff_ffv1_init_slice_contexts
av_cold int ff_ffv1_init_slice_contexts(FFV1Context *f)
Definition: ffv1.c:140
encode_histogram_remap
static void encode_histogram_remap(FFV1Context *f, FFV1SliceContext *sc)
Definition: ffv1enc.c:1189
int32_t
int32_t
Definition: audioconvert.c:56
AVFrame::linesize
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
Definition: frame.h:455
AV_PIX_FMT_YUV410P
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:79
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
AVERROR_INVALIDDATA
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:61
AV_PIX_FMT_YUV440P12
#define AV_PIX_FMT_YUV440P12
Definition: pixfmt.h:534
h
h
Definition: vp9dsp_template.c:2070
RangeCoder
Definition: mss3.c:63
AV_PIX_FMT_YUV444P14
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:538
ff_ffv1_encoder
const FFCodec ff_ffv1_encoder
Definition: ffv1enc.c:1893
width
#define width
Definition: dsp.h:85
write_header
static void write_header(FFV1Context *f)
Definition: ffv1enc.c:382
RENAME
#define RENAME(name)
Definition: ffv1enc.c:271
AV_PIX_FMT_GRAY12
#define AV_PIX_FMT_GRAY12
Definition: pixfmt.h:509
FFV1SliceContext::ac_byte_count
int ac_byte_count
number of bytes used for AC coding
Definition: ffv1.h:94
put_bits.h
AV_OPT_TYPE_CONST
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
Definition: opt.h:299
snprintf
#define snprintf
Definition: snprintf.h:34
av_log2
int av_log2(unsigned v)
Definition: intmath.c:26
FFV1SliceContext::slice_coding_mode
int slice_coding_mode
Definition: ffv1.h:84
ff_alloc_packet
int ff_alloc_packet(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and allocate data.
Definition: encode.c:62
ff_ffv1_compute_bits_per_plane
void ff_ffv1_compute_bits_per_plane(const FFV1Context *f, FFV1SliceContext *sc, int bits[4], int *offset, int mask[4], int bits_per_raw_sample)
Definition: ffv1.c:222
src
#define src
Definition: vp8dsp.c:248
encode_float32_rgb_frame
static int encode_float32_rgb_frame(FFV1Context *f, FFV1SliceContext *sc, const uint8_t *src[4], int w, int h, const int stride[4], int ac)
Definition: ffv1enc.c:1489
AV_PIX_FMT_YUVA422P
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:173
AV_PIX_FMT_YUV420P14
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:536
av_get_pix_fmt_name
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:3261
AV_CODEC_FLAG_PASS1
#define AV_CODEC_FLAG_PASS1
Use internal 2pass ratecontrol in first pass mode.
Definition: avcodec.h:290
encode_slice_header
static void encode_slice_header(FFV1Context *f, FFV1SliceContext *sc)
Definition: ffv1enc.c:1060