FFmpeg
rematrix.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
3  *
4  * This file is part of libswresample
5  *
6  * libswresample is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * libswresample is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with libswresample; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "swresample_internal.h"
22 #include "libavutil/avassert.h"
24 #include "libavutil/mem.h"
25 
26 #define TEMPLATE_REMATRIX_FLT
27 #include "rematrix_template.c"
28 #undef TEMPLATE_REMATRIX_FLT
29 
30 #define TEMPLATE_REMATRIX_DBL
31 #include "rematrix_template.c"
32 #undef TEMPLATE_REMATRIX_DBL
33 
34 #define TEMPLATE_REMATRIX_S16
35 #include "rematrix_template.c"
36 #define TEMPLATE_CLIP
37 #include "rematrix_template.c"
38 #undef TEMPLATE_CLIP
39 #undef TEMPLATE_REMATRIX_S16
40 
41 #define TEMPLATE_REMATRIX_S32
42 #include "rematrix_template.c"
43 #undef TEMPLATE_REMATRIX_S32
44 
45 #define FRONT_LEFT 0
46 #define FRONT_RIGHT 1
47 #define FRONT_CENTER 2
48 #define LOW_FREQUENCY 3
49 #define BACK_LEFT 4
50 #define BACK_RIGHT 5
51 #define FRONT_LEFT_OF_CENTER 6
52 #define FRONT_RIGHT_OF_CENTER 7
53 #define BACK_CENTER 8
54 #define SIDE_LEFT 9
55 #define SIDE_RIGHT 10
56 #define TOP_CENTER 11
57 #define TOP_FRONT_LEFT 12
58 #define TOP_FRONT_CENTER 13
59 #define TOP_FRONT_RIGHT 14
60 #define TOP_BACK_LEFT 15
61 #define TOP_BACK_CENTER 16
62 #define TOP_BACK_RIGHT 17
63 #define NUM_NAMED_CHANNELS 18
64 
65 int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
66 {
67  int nb_in, nb_out, in, out;
68 
69  if (!s || s->in_convert) // s needs to be allocated but not initialized
70  return AVERROR(EINVAL);
71  memset(s->matrix, 0, sizeof(s->matrix));
72 
73  nb_in = s->user_in_chlayout.nb_channels;
74  nb_out = s->user_out_chlayout.nb_channels;
75  for (out = 0; out < nb_out; out++) {
76  for (in = 0; in < nb_in; in++)
77  s->matrix[out][in] = matrix[in];
78  matrix += stride;
79  }
80  s->rematrix_custom = 1;
81  return 0;
82 }
83 
84 static int even(int64_t layout){
85  if(!layout) return 1;
86  if(layout&(layout-1)) return 1;
87  return 0;
88 }
89 
90 static int clean_layout(AVChannelLayout *out, const AVChannelLayout *in, void *s)
91 {
92  int ret = 0;
93 
95  char buf[128];
96  av_channel_layout_describe(in, buf, sizeof(buf));
97  av_log(s, AV_LOG_VERBOSE, "Treating %s as mono\n", buf);
99  } else
101 
102  return ret;
103 }
104 
105 static int sane_layout(AVChannelLayout *ch_layout) {
106  if(ch_layout->nb_channels >= SWR_CH_MAX)
107  return 0;
108  if(ch_layout->order == AV_CHANNEL_ORDER_CUSTOM)
109  for (int i = 0; i < ch_layout->nb_channels; i++) {
110  if (ch_layout->u.map[i].id >= 64)
111  return 0;
112  }
113  else if (ch_layout->order != AV_CHANNEL_ORDER_NATIVE)
114  return 0;
115  if(!av_channel_layout_subset(ch_layout, AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker
116  return 0;
117  if(!even(av_channel_layout_subset(ch_layout, (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT)))) // no asymmetric front
118  return 0;
119  if(!even(av_channel_layout_subset(ch_layout, (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT)))) // no asymmetric side
120  return 0;
122  return 0;
124  return 0;
126  return 0;
127 
128  return 1;
129 }
130 
131 static void build_matrix(const AVChannelLayout *in_ch_layout, const AVChannelLayout *out_ch_layout,
132  double center_mix_level, double surround_mix_level,
133  double lfe_mix_level, double maxval, double rematrix_volume, double *matrix_param,
134  ptrdiff_t stride, enum AVMatrixEncoding matrix_encoding)
135 {
137  uint64_t unaccounted = av_channel_layout_subset(in_ch_layout, UINT64_MAX) &
138  ~av_channel_layout_subset(out_ch_layout, UINT64_MAX);
139  double maxcoef=0;
140  int i, j;
141 
142  for(i=0; i<FF_ARRAY_ELEMS(matrix); i++){
143  if( av_channel_layout_index_from_channel(in_ch_layout, i) >= 0
144  && av_channel_layout_index_from_channel(out_ch_layout, i) >= 0)
145  matrix[i][i]= 1.0;
146  }
147 
148 //FIXME implement dolby surround
149 //FIXME implement full ac3
150 
151  if(unaccounted & AV_CH_FRONT_CENTER){
153  if (av_channel_layout_subset(in_ch_layout, AV_CH_LAYOUT_STEREO)) {
154  matrix[ FRONT_LEFT][FRONT_CENTER]+= center_mix_level;
155  matrix[FRONT_RIGHT][FRONT_CENTER]+= center_mix_level;
156  } else {
159  }
160  }else
161  av_assert0(0);
162  }
163  if(unaccounted & AV_CH_LAYOUT_STEREO){
168  matrix[FRONT_CENTER][ FRONT_CENTER] = center_mix_level*sqrt(2);
169  }else
170  av_assert0(0);
171  }
172 
173  if(unaccounted & AV_CH_BACK_CENTER){
174  if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_BACK_LEFT) >= 0) {
177  } else if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_SIDE_LEFT) >= 0) {
180  } else if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_FRONT_LEFT) >= 0) {
181  if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY ||
182  matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
183  if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
184  matrix[FRONT_LEFT ][BACK_CENTER] -= surround_mix_level * M_SQRT1_2;
185  matrix[FRONT_RIGHT][BACK_CENTER] += surround_mix_level * M_SQRT1_2;
186  } else {
187  matrix[FRONT_LEFT ][BACK_CENTER] -= surround_mix_level;
188  matrix[FRONT_RIGHT][BACK_CENTER] += surround_mix_level;
189  }
190  } else {
191  matrix[ FRONT_LEFT][BACK_CENTER]+= surround_mix_level * M_SQRT1_2;
192  matrix[FRONT_RIGHT][BACK_CENTER]+= surround_mix_level * M_SQRT1_2;
193  }
194  } else if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_FRONT_CENTER) >= 0) {
195  matrix[ FRONT_CENTER][BACK_CENTER]+= surround_mix_level * M_SQRT1_2;
196  }else
197  av_assert0(0);
198  }
199  if(unaccounted & AV_CH_BACK_LEFT){
203  } else if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_SIDE_LEFT) >= 0) {
207  }else{
208  matrix[ SIDE_LEFT][ BACK_LEFT]+= 1.0;
209  matrix[SIDE_RIGHT][BACK_RIGHT]+= 1.0;
210  }
211  } else if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_FRONT_LEFT) >= 0) {
212  if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
213  matrix[FRONT_LEFT ][BACK_LEFT ] -= surround_mix_level * M_SQRT1_2;
214  matrix[FRONT_LEFT ][BACK_RIGHT] -= surround_mix_level * M_SQRT1_2;
215  matrix[FRONT_RIGHT][BACK_LEFT ] += surround_mix_level * M_SQRT1_2;
216  matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level * M_SQRT1_2;
217  } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
218  matrix[FRONT_LEFT ][BACK_LEFT ] -= surround_mix_level * SQRT3_2;
219  matrix[FRONT_LEFT ][BACK_RIGHT] -= surround_mix_level * M_SQRT1_2;
220  matrix[FRONT_RIGHT][BACK_LEFT ] += surround_mix_level * M_SQRT1_2;
221  matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level * SQRT3_2;
222  } else {
223  matrix[ FRONT_LEFT][ BACK_LEFT] += surround_mix_level;
224  matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level;
225  }
226  } else if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_FRONT_CENTER) >= 0) {
227  matrix[ FRONT_CENTER][BACK_LEFT ]+= surround_mix_level*M_SQRT1_2;
228  matrix[ FRONT_CENTER][BACK_RIGHT]+= surround_mix_level*M_SQRT1_2;
229  }else
230  av_assert0(0);
231  }
232 
233  if(unaccounted & AV_CH_SIDE_LEFT){
234  if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_BACK_LEFT) >= 0) {
235  /* if back channels do not exist in the input, just copy side
236  channels to back channels, otherwise mix side into back */
240  } else {
241  matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0;
242  matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
243  }
244  } else if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_BACK_CENTER) >= 0) {
247  } else if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_FRONT_LEFT) >= 0) {
248  if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
249  matrix[FRONT_LEFT ][SIDE_LEFT ] -= surround_mix_level * M_SQRT1_2;
250  matrix[FRONT_LEFT ][SIDE_RIGHT] -= surround_mix_level * M_SQRT1_2;
251  matrix[FRONT_RIGHT][SIDE_LEFT ] += surround_mix_level * M_SQRT1_2;
252  matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level * M_SQRT1_2;
253  } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
254  matrix[FRONT_LEFT ][SIDE_LEFT ] -= surround_mix_level * SQRT3_2;
255  matrix[FRONT_LEFT ][SIDE_RIGHT] -= surround_mix_level * M_SQRT1_2;
256  matrix[FRONT_RIGHT][SIDE_LEFT ] += surround_mix_level * M_SQRT1_2;
257  matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level * SQRT3_2;
258  } else {
259  matrix[ FRONT_LEFT][ SIDE_LEFT] += surround_mix_level;
260  matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level;
261  }
262  } else if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_FRONT_CENTER) >= 0) {
263  matrix[ FRONT_CENTER][SIDE_LEFT ]+= surround_mix_level * M_SQRT1_2;
264  matrix[ FRONT_CENTER][SIDE_RIGHT]+= surround_mix_level * M_SQRT1_2;
265  }else
266  av_assert0(0);
267  }
268 
269  if(unaccounted & AV_CH_FRONT_LEFT_OF_CENTER){
270  if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_FRONT_LEFT) >= 0) {
273  } else if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_FRONT_CENTER) >= 0) {
276  }else
277  av_assert0(0);
278  }
279 
280  if (unaccounted & AV_CH_TOP_FRONT_LEFT) {
285  matrix[TOP_FRONT_CENTER][TOP_FRONT_CENTER] = center_mix_level * sqrt(2);
286  } else if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_FRONT_LEFT) >= 0) {
290  } else {
291  matrix[FRONT_LEFT ][TOP_FRONT_LEFT ] += 1.0;
293  }
294  } else if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_FRONT_CENTER) >= 0) {
297  } else
298  av_assert0(0);
299  }
300 
301  /* mix LFE into front left/right or center */
302  if (unaccounted & AV_CH_LOW_FREQUENCY) {
304  matrix[FRONT_CENTER][LOW_FREQUENCY] += lfe_mix_level;
305  } else if (av_channel_layout_index_from_channel(out_ch_layout, AV_CHAN_FRONT_LEFT) >= 0) {
306  matrix[FRONT_LEFT ][LOW_FREQUENCY] += lfe_mix_level * M_SQRT1_2;
307  matrix[FRONT_RIGHT][LOW_FREQUENCY] += lfe_mix_level * M_SQRT1_2;
308  } else
309  av_assert0(0);
310  }
311 
312 
313  for (i = 0; i < 64; i++) {
314  double sum=0;
315  int out_i = av_channel_layout_index_from_channel(out_ch_layout, i);
316  if (out_i < 0)
317  continue;
318  for(j=0; j<64; j++){
319  int in_i = av_channel_layout_index_from_channel(in_ch_layout, j);
320  if (in_i < 0)
321  continue;
322  if (i < FF_ARRAY_ELEMS(matrix) && j < FF_ARRAY_ELEMS(matrix[0]))
323  matrix_param[stride*out_i + in_i] = matrix[i][j];
324  else
325  matrix_param[stride*out_i + in_i] = i == j &&
326  ( av_channel_layout_index_from_channel(in_ch_layout, i) >= 0
327  && av_channel_layout_index_from_channel(out_ch_layout, i) >= 0);
328  sum += fabs(matrix_param[stride*out_i + in_i]);
329  }
330  maxcoef= FFMAX(maxcoef, sum);
331  }
332  if(rematrix_volume < 0)
333  maxcoef = -rematrix_volume;
334 
335  if(maxcoef > maxval || rematrix_volume < 0){
336  maxcoef /= maxval;
337  for(i=0; i<SWR_CH_MAX; i++)
338  for(j=0; j<SWR_CH_MAX; j++){
339  matrix_param[stride*i + j] /= maxcoef;
340  }
341  }
342 }
343 
344 av_cold int swr_build_matrix2(const AVChannelLayout *in_layout, const AVChannelLayout *out_layout,
345  double center_mix_level, double surround_mix_level,
346  double lfe_mix_level, double maxval,
347  double rematrix_volume, double *matrix_param,
348  ptrdiff_t stride, enum AVMatrixEncoding matrix_encoding, void *log_context)
349 {
350  int i, j, ret;
351  AVChannelLayout in_ch_layout = { 0 }, out_ch_layout = { 0 };
352  char buf[128];
353 
354  ret = clean_layout(&in_ch_layout, in_layout, log_context);
355  ret |= clean_layout(&out_ch_layout, out_layout, log_context);
356  if (ret < 0)
357  goto fail;
358 
361  ) {
362  av_channel_layout_uninit(&out_ch_layout);
363  out_ch_layout = (AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO;
364  }
367  ) {
368  av_channel_layout_uninit(&in_ch_layout);
370  }
374  av_channel_layout_describe(&in_ch_layout, buf, sizeof(buf));
375  av_log(log_context, AV_LOG_WARNING,
376  "Full-on remixing from 22.2 has not yet been implemented! "
377  "Processing the input as '%s'\n",
378  buf);
379  }
380 
381  if(!av_channel_layout_check(&in_ch_layout)) {
382  av_log(log_context, AV_LOG_ERROR, "Input channel layout is invalid\n");
383  ret = AVERROR(EINVAL);
384  goto fail;
385  }
386  if(!sane_layout(&in_ch_layout)) {
387  av_channel_layout_describe(&in_ch_layout, buf, sizeof(buf));
388  av_log(log_context, AV_LOG_ERROR, "Input channel layout '%s' is not supported\n", buf);
389  ret = AVERROR(EINVAL);
390  goto fail;
391  }
392 
393  if(!av_channel_layout_check(&out_ch_layout)) {
394  av_log(log_context, AV_LOG_ERROR, "Output channel layout is invalid\n");
395  ret = AVERROR(EINVAL);
396  goto fail;
397  }
398  if(!sane_layout(&out_ch_layout)) {
399  av_channel_layout_describe(&out_ch_layout, buf, sizeof(buf));
400  av_log(log_context, AV_LOG_ERROR, "Output channel layout '%s' is not supported\n", buf);
401  ret = AVERROR(EINVAL);
402  goto fail;
403  }
404 
405  build_matrix(&in_ch_layout, &out_ch_layout, center_mix_level,
406  surround_mix_level, lfe_mix_level, maxval, rematrix_volume,
407  matrix_param, stride, matrix_encoding);
408 
409  if(rematrix_volume > 0){
410  for(i=0; i<SWR_CH_MAX; i++)
411  for(j=0; j<SWR_CH_MAX; j++){
412  matrix_param[stride*i + j] *= rematrix_volume;
413  }
414  }
415 
416  av_log(log_context, AV_LOG_DEBUG, "Matrix coefficients:\n");
417  for (i = 0; i < out_ch_layout.nb_channels; i++){
418  av_channel_name(buf, sizeof(buf), av_channel_layout_channel_from_index(&out_ch_layout, i));
419  av_log(log_context, AV_LOG_DEBUG, "%s: ", buf);
420  for (j = 0; j < in_ch_layout.nb_channels; j++){
421  av_channel_name(buf, sizeof(buf), av_channel_layout_channel_from_index(&in_ch_layout, j));
422  av_log(log_context, AV_LOG_DEBUG, "%s:%f ", buf, matrix_param[stride*i + j]);
423  }
424  av_log(log_context, AV_LOG_DEBUG, "\n");
425  }
426 
427  ret = 0;
428 fail:
429  av_channel_layout_uninit(&in_ch_layout);
430  av_channel_layout_uninit(&out_ch_layout);
431 
432  return ret;
433 }
434 
436 {
437  double maxval;
438 
439  if (s->rematrix_maxval > 0) {
440  maxval = s->rematrix_maxval;
441  } else if ( av_get_packed_sample_fmt(s->out_sample_fmt) < AV_SAMPLE_FMT_FLT
442  || av_get_packed_sample_fmt(s->int_sample_fmt) < AV_SAMPLE_FMT_FLT) {
443  maxval = 1.0;
444  } else
445  maxval = INT_MAX;
446 
447  memset(s->matrix, 0, sizeof(s->matrix));
448  return swr_build_matrix2(&s->in_ch_layout, &s->out_ch_layout,
449  s->clev, s->slev, s->lfe_mix_level,
450  maxval, s->rematrix_volume, (double*)s->matrix,
451  s->matrix[1] - s->matrix[0], s->matrix_encoding, s);
452 }
453 
455  int i, j;
456  int nb_in = s->used_ch_layout.nb_channels;
457  int nb_out = s->out.ch_count;
458 
459  s->mix_any_f = NULL;
460 
461  if (!s->rematrix_custom) {
462  int r = auto_matrix(s);
463  if (r)
464  return r;
465  }
466  if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){
467  int maxsum = 0;
468  s->native_matrix = av_calloc(nb_in * nb_out, sizeof(int));
469  if (!s->native_matrix)
470  return AVERROR(ENOMEM);
471  for (i = 0; i < nb_out; i++) {
472  double rem = 0;
473  int sum = 0;
474 
475  for (j = 0; j < nb_in; j++) {
476  double target = s->matrix[i][j] * 32768 + rem;
477  ((int*)s->native_matrix)[i * nb_in + j] = lrintf(target);
478  rem += target - ((int*)s->native_matrix)[i * nb_in + j];
479  sum += FFABS(((int*)s->native_matrix)[i * nb_in + j]);
480  }
481  maxsum = FFMAX(maxsum, sum);
482  }
483  s->native_one.i = 32768;
484  if (maxsum <= 32768) {
485  s->mix_1_1_f = copy_s16;
486  s->mix_2_1_f = sum2_s16;
487  s->mix_any_f = get_mix_any_func_s16(s);
488  } else {
489  s->mix_1_1_f = copy_clip_s16;
490  s->mix_2_1_f = sum2_clip_s16;
491  s->mix_any_f = get_mix_any_func_clip_s16(s);
492  }
493  }else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){
494  s->native_matrix = av_calloc(nb_in * nb_out, sizeof(float));
495  if (!s->native_matrix)
496  return AVERROR(ENOMEM);
497  for (i = 0; i < nb_out; i++)
498  for (j = 0; j < nb_in; j++)
499  ((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
500  s->native_one.f = 1.0;
501  s->mix_1_1_f = copy_float;
502  s->mix_2_1_f = sum2_float;
503  s->mix_any_f = get_mix_any_func_float(s);
504  }else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){
505  s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double));
506  if (!s->native_matrix)
507  return AVERROR(ENOMEM);
508  for (i = 0; i < nb_out; i++)
509  for (j = 0; j < nb_in; j++)
510  ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
511  s->native_one.d = 1.0;
512  s->mix_1_1_f = copy_double;
513  s->mix_2_1_f = sum2_double;
514  s->mix_any_f = get_mix_any_func_double(s);
515  }else if(s->midbuf.fmt == AV_SAMPLE_FMT_S32P){
516  s->native_matrix = av_calloc(nb_in * nb_out, sizeof(int));
517  if (!s->native_matrix)
518  return AVERROR(ENOMEM);
519  for (i = 0; i < nb_out; i++) {
520  double rem = 0;
521 
522  for (j = 0; j < nb_in; j++) {
523  double target = s->matrix[i][j] * 32768 + rem;
524  ((int*)s->native_matrix)[i * nb_in + j] = lrintf(target);
525  rem += target - ((int*)s->native_matrix)[i * nb_in + j];
526  }
527  }
528  s->native_one.i = 32768;
529  s->mix_1_1_f = copy_s32;
530  s->mix_2_1_f = sum2_s32;
531  s->mix_any_f = get_mix_any_func_s32(s);
532  }else
533  av_assert0(0);
534  //FIXME quantize for integeres
535  for (i = 0; i < SWR_CH_MAX; i++) {
536  int ch_in=0;
537  for (j = 0; j < SWR_CH_MAX; j++) {
538  const double coeff = s->matrix[i][j];
539  if (coeff)
540  s->matrix_ch[i][++ch_in]= j;
541  switch (s->int_sample_fmt) {
542  case AV_SAMPLE_FMT_FLTP:
543  s->matrix_flt[i][j] = coeff;
544  break;
545  case AV_SAMPLE_FMT_DBLP:
546  break;
547  default:
548  s->matrix32[i][j] = lrintf(coeff * 32768);
549  break;
550  }
551  }
552  s->matrix_ch[i][0]= ch_in;
553  }
554 
555 #if ARCH_X86 && HAVE_X86ASM && HAVE_MMX
556  return swri_rematrix_init_x86(s);
557 #endif
558 
559  return 0;
560 }
561 
563  av_freep(&s->native_matrix);
564  av_freep(&s->native_simd_matrix);
565 }
566 
567 int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){
568  int out_i, in_i, i, j;
569  int len1 = 0;
570  int off = 0;
571 
572  if(s->mix_any_f) {
573  s->mix_any_f(out->ch, (const uint8_t *const *)in->ch, s->native_matrix, len);
574  return 0;
575  }
576 
577  if(s->mix_2_1_simd || s->mix_1_1_simd){
578  len1= len&~15;
579  off = len1 * out->bps;
580  }
581 
582  av_assert0(s->out_ch_layout.order == AV_CHANNEL_ORDER_UNSPEC || out->ch_count == s->out_ch_layout.nb_channels);
583  av_assert0(s-> in_ch_layout.order == AV_CHANNEL_ORDER_UNSPEC || in ->ch_count == s->in_ch_layout.nb_channels);
584 
585  for(out_i=0; out_i<out->ch_count; out_i++){
586  switch(s->matrix_ch[out_i][0]){
587  case 0:
588  if(mustcopy)
589  memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt));
590  break;
591  case 1:
592  in_i= s->matrix_ch[out_i][1];
593  if(s->matrix[out_i][in_i]!=1.0){
594  if(s->mix_1_1_simd && len1)
595  s->mix_1_1_simd(out->ch[out_i] , in->ch[in_i] , s->native_simd_matrix, in->ch_count*out_i + in_i, len1);
596  if(len != len1)
597  s->mix_1_1_f (out->ch[out_i]+off, in->ch[in_i]+off, s->native_matrix, in->ch_count*out_i + in_i, len-len1);
598  }else if(mustcopy){
599  memcpy(out->ch[out_i], in->ch[in_i], len*out->bps);
600  }else{
601  out->ch[out_i]= in->ch[in_i];
602  }
603  break;
604  case 2: {
605  int in_i1 = s->matrix_ch[out_i][1];
606  int in_i2 = s->matrix_ch[out_i][2];
607  if(s->mix_2_1_simd && len1)
608  s->mix_2_1_simd(out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_simd_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
609  else
610  s->mix_2_1_f (out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
611  if(len != len1)
612  s->mix_2_1_f (out->ch[out_i]+off, in->ch[in_i1]+off, in->ch[in_i2]+off, s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len-len1);
613  break;}
614  default:
615  if(s->int_sample_fmt == AV_SAMPLE_FMT_FLTP){
616  for(i=0; i<len; i++){
617  float v=0;
618  for(j=0; j<s->matrix_ch[out_i][0]; j++){
619  in_i= s->matrix_ch[out_i][1+j];
620  v+= ((float*)in->ch[in_i])[i] * s->matrix_flt[out_i][in_i];
621  }
622  ((float*)out->ch[out_i])[i]= v;
623  }
624  }else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){
625  for(i=0; i<len; i++){
626  double v=0;
627  for(j=0; j<s->matrix_ch[out_i][0]; j++){
628  in_i= s->matrix_ch[out_i][1+j];
629  v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
630  }
631  ((double*)out->ch[out_i])[i]= v;
632  }
633  }else{
634  for(i=0; i<len; i++){
635  int v=0;
636  for(j=0; j<s->matrix_ch[out_i][0]; j++){
637  in_i= s->matrix_ch[out_i][1+j];
638  v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i];
639  }
640  ((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15;
641  }
642  }
643  }
644  }
645  return 0;
646 }
AV_SAMPLE_FMT_FLTP
@ AV_SAMPLE_FMT_FLTP
float, planar
Definition: samplefmt.h:66
AV_LOG_WARNING
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:216
AV_CH_LAYOUT_7POINT1_WIDE_BACK
#define AV_CH_LAYOUT_7POINT1_WIDE_BACK
Definition: channel_layout.h:242
AV_CHANNEL_LAYOUT_STEREO_DOWNMIX
#define AV_CHANNEL_LAYOUT_STEREO_DOWNMIX
Definition: channel_layout.h:432
r
const char * r
Definition: vf_curves.c:127
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
out
FILE * out
Definition: movenc.c:55
AV_CHANNEL_LAYOUT_STEREO
#define AV_CHANNEL_LAYOUT_STEREO
Definition: channel_layout.h:395
NUM_NAMED_CHANNELS
#define NUM_NAMED_CHANNELS
Definition: rematrix.c:63
matrix
Definition: vc1dsp.c:43
int64_t
long long int64_t
Definition: coverity.c:34
rematrix_template.c
AVChannelLayout::map
AVChannelCustom * map
This member must be used when the channel order is AV_CHANNEL_ORDER_CUSTOM.
Definition: channel_layout.h:370
AV_CH_TOP_FRONT_RIGHT
#define AV_CH_TOP_FRONT_RIGHT
Definition: channel_layout.h:189
av_channel_layout_channel_from_index
enum AVChannel av_channel_layout_channel_from_index(const AVChannelLayout *channel_layout, unsigned int idx)
Get the channel with the given index in a channel layout.
Definition: channel_layout.c:673
TOP_FRONT_RIGHT
#define TOP_FRONT_RIGHT
Definition: rematrix.c:59
AV_SAMPLE_FMT_S32P
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
Definition: samplefmt.h:65
swri_rematrix_init_x86
int swri_rematrix_init_x86(struct SwrContext *s)
AV_LOG_VERBOSE
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:226
sane_layout
static int sane_layout(AVChannelLayout *ch_layout)
Definition: rematrix.c:105
AV_CH_TOP_FRONT_LEFT
#define AV_CH_TOP_FRONT_LEFT
Definition: channel_layout.h:187
SQRT3_2
#define SQRT3_2
Definition: swresample_internal.h:30
AVChannelLayout::order
enum AVChannelOrder order
Channel order used in this layout.
Definition: channel_layout.h:324
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
AVChannelLayout::nb_channels
int nb_channels
Number of channels in this layout.
Definition: channel_layout.h:329
swr_set_matrix
int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
Set a customized remix matrix.
Definition: rematrix.c:65
AudioData
Definition: swresample_internal.h:45
fail
#define fail()
Definition: checkasm.h:200
FRONT_LEFT_OF_CENTER
#define FRONT_LEFT_OF_CENTER
Definition: rematrix.c:51
AV_CH_BACK_LEFT
#define AV_CH_BACK_LEFT
Definition: channel_layout.h:179
AV_CH_LAYOUT_STEREO
#define AV_CH_LAYOUT_STEREO
Definition: channel_layout.h:218
avassert.h
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:210
even
static int even(int64_t layout)
Definition: rematrix.c:84
FF_ARRAY_ELEMS
#define FF_ARRAY_ELEMS(a)
Definition: sinewin_tablegen.c:29
av_cold
#define av_cold
Definition: attributes.h:90
AV_MATRIX_ENCODING_DOLBY
@ AV_MATRIX_ENCODING_DOLBY
Definition: channel_layout.h:262
TOP_FRONT_LEFT
#define TOP_FRONT_LEFT
Definition: rematrix.c:57
AV_CH_LOW_FREQUENCY
#define AV_CH_LOW_FREQUENCY
Definition: channel_layout.h:178
av_channel_layout_describe
int av_channel_layout_describe(const AVChannelLayout *channel_layout, char *buf, size_t buf_size)
Get a human-readable string describing the channel layout properties.
Definition: channel_layout.c:653
s
#define s(width, name)
Definition: cbs_vp9.c:198
AV_CHANNEL_ORDER_UNSPEC
@ AV_CHANNEL_ORDER_UNSPEC
Only the channel count is specified, without any further information about the channel order.
Definition: channel_layout.h:119
av_channel_layout_from_mask
int av_channel_layout_from_mask(AVChannelLayout *channel_layout, uint64_t mask)
Initialize a native channel layout from a bitmask indicating which channels are present.
Definition: channel_layout.c:252
AV_CH_LAYOUT_STEREO_DOWNMIX
#define AV_CH_LAYOUT_STEREO_DOWNMIX
Definition: channel_layout.h:255
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:41
swri_rematrix
int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy)
Definition: rematrix.c:567
AV_LOG_DEBUG
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:231
auto_matrix
static av_cold int auto_matrix(SwrContext *s)
Definition: rematrix.c:435
SwrContext
The libswresample context.
Definition: swresample_internal.h:95
AudioData::ch
uint8_t * ch[SWR_CH_MAX]
samples buffer per channel
Definition: swresample_internal.h:46
FRONT_RIGHT
#define FRONT_RIGHT
Definition: rematrix.c:46
FFABS
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:74
swr_build_matrix2
av_cold int swr_build_matrix2(const AVChannelLayout *in_layout, const AVChannelLayout *out_layout, double center_mix_level, double surround_mix_level, double lfe_mix_level, double maxval, double rematrix_volume, double *matrix_param, ptrdiff_t stride, enum AVMatrixEncoding matrix_encoding, void *log_context)
Generate a channel mixing matrix.
Definition: rematrix.c:344
AVMatrixEncoding
AVMatrixEncoding
Definition: channel_layout.h:260
AVChannelLayout::u
union AVChannelLayout::@473 u
Details about which channels are present in this layout.
fabs
static __device__ float fabs(float a)
Definition: cuda_runtime.h:182
NULL
#define NULL
Definition: coverity.c:32
build_matrix
static void build_matrix(const AVChannelLayout *in_ch_layout, const AVChannelLayout *out_ch_layout, double center_mix_level, double surround_mix_level, double lfe_mix_level, double maxval, double rematrix_volume, double *matrix_param, ptrdiff_t stride, enum AVMatrixEncoding matrix_encoding)
Definition: rematrix.c:131
AV_CH_FRONT_CENTER
#define AV_CH_FRONT_CENTER
Definition: channel_layout.h:177
AV_CH_FRONT_LEFT_OF_CENTER
#define AV_CH_FRONT_LEFT_OF_CENTER
Definition: channel_layout.h:181
AV_CHANNEL_LAYOUT_22POINT2
#define AV_CHANNEL_LAYOUT_22POINT2
Definition: channel_layout.h:433
AV_CHAN_FRONT_CENTER
@ AV_CHAN_FRONT_CENTER
Definition: channel_layout.h:52
AudioData::ch_count
int ch_count
number of channels
Definition: swresample_internal.h:48
BACK_LEFT
#define BACK_LEFT
Definition: rematrix.c:49
AVChannelLayout
An AVChannelLayout holds information about the channel layout of audio data.
Definition: channel_layout.h:319
BACK_RIGHT
#define BACK_RIGHT
Definition: rematrix.c:50
AV_CHAN_SIDE_LEFT
@ AV_CHAN_SIDE_LEFT
Definition: channel_layout.h:59
SIDE_LEFT
#define SIDE_LEFT
Definition: rematrix.c:54
swri_rematrix_free
av_cold void swri_rematrix_free(SwrContext *s)
Definition: rematrix.c:562
swresample_internal.h
AV_CHANNEL_ORDER_NATIVE
@ AV_CHANNEL_ORDER_NATIVE
The native channel order, i.e.
Definition: channel_layout.h:125
AV_CH_FRONT_RIGHT_OF_CENTER
#define AV_CH_FRONT_RIGHT_OF_CENTER
Definition: channel_layout.h:182
FRONT_CENTER
#define FRONT_CENTER
Definition: rematrix.c:47
AV_SAMPLE_FMT_S16P
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
Definition: samplefmt.h:64
av_channel_layout_compare
int av_channel_layout_compare(const AVChannelLayout *chl, const AVChannelLayout *chl1)
Check whether two channel layouts are semantically the same, i.e.
Definition: channel_layout.c:809
layout
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
Definition: filter_design.txt:18
FRONT_RIGHT_OF_CENTER
#define FRONT_RIGHT_OF_CENTER
Definition: rematrix.c:52
lrintf
#define lrintf(x)
Definition: libm_mips.h:72
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:256
av_get_bytes_per_sample
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:108
av_channel_name
int av_channel_name(char *buf, size_t buf_size, enum AVChannel channel_id)
Get a human readable string in an abbreviated form describing a given channel.
Definition: channel_layout.c:104
AV_CH_BACK_CENTER
#define AV_CH_BACK_CENTER
Definition: channel_layout.h:183
AV_CH_FRONT_LEFT
#define AV_CH_FRONT_LEFT
Definition: channel_layout.h:175
AV_CH_SIDE_RIGHT
#define AV_CH_SIDE_RIGHT
Definition: channel_layout.h:185
len
int len
Definition: vorbis_enc_data.h:426
FRONT_LEFT
#define FRONT_LEFT
Definition: rematrix.c:45
av_calloc
void * av_calloc(size_t nmemb, size_t size)
Definition: mem.c:264
stride
#define stride
Definition: h264pred_template.c:536
ret
ret
Definition: filter_design.txt:187
AV_CH_LAYOUT_SURROUND
#define AV_CH_LAYOUT_SURROUND
Definition: channel_layout.h:221
av_channel_layout_check
int av_channel_layout_check(const AVChannelLayout *channel_layout)
Check whether a channel layout is valid, i.e.
Definition: channel_layout.c:783
AV_CHAN_BACK_CENTER
@ AV_CHAN_BACK_CENTER
Definition: channel_layout.h:58
TOP_FRONT_CENTER
#define TOP_FRONT_CENTER
Definition: rematrix.c:58
M_SQRT1_2
#define M_SQRT1_2
Definition: mathematics.h:103
SWR_CH_MAX
#define SWR_CH_MAX
Definition: af_amerge.c:36
AV_CHANNEL_ORDER_CUSTOM
@ AV_CHANNEL_ORDER_CUSTOM
The channel order does not correspond to any other predefined order and is stored as an explicit map.
Definition: channel_layout.h:132
channel_layout.h
av_channel_layout_subset
uint64_t av_channel_layout_subset(const AVChannelLayout *channel_layout, uint64_t mask)
Find out what channels from a given set are present in a channel layout, without regard for their pos...
Definition: channel_layout.c:865
av_channel_layout_index_from_channel
int av_channel_layout_index_from_channel(const AVChannelLayout *channel_layout, enum AVChannel channel)
Get the index of a given channel in a channel layout.
Definition: channel_layout.c:713
av_channel_layout_uninit
void av_channel_layout_uninit(AVChannelLayout *channel_layout)
Free any allocated data in the channel layout and reset the channel count to 0.
Definition: channel_layout.c:442
av_get_packed_sample_fmt
enum AVSampleFormat av_get_packed_sample_fmt(enum AVSampleFormat sample_fmt)
Get the packed alternative form of the given sample format.
Definition: samplefmt.c:77
AV_SAMPLE_FMT_DBLP
@ AV_SAMPLE_FMT_DBLP
double, planar
Definition: samplefmt.h:67
AV_CHAN_BACK_LEFT
@ AV_CHAN_BACK_LEFT
Definition: channel_layout.h:54
swri_rematrix_init
av_cold int swri_rematrix_init(SwrContext *s)
Definition: rematrix.c:454
AV_CH_FRONT_RIGHT
#define AV_CH_FRONT_RIGHT
Definition: channel_layout.h:176
av_channel_layout_copy
int av_channel_layout_copy(AVChannelLayout *dst, const AVChannelLayout *src)
Make a copy of a channel layout.
Definition: channel_layout.c:449
AV_CHAN_TOP_FRONT_CENTER
@ AV_CHAN_TOP_FRONT_CENTER
Definition: channel_layout.h:63
mem.h
AV_CHANNEL_LAYOUT_MONO
#define AV_CHANNEL_LAYOUT_MONO
Definition: channel_layout.h:394
LOW_FREQUENCY
#define LOW_FREQUENCY
Definition: rematrix.c:48
BACK_CENTER
#define BACK_CENTER
Definition: rematrix.c:53
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:35
SIDE_RIGHT
#define SIDE_RIGHT
Definition: rematrix.c:55
coeff
static const double coeff[2][5]
Definition: vf_owdenoise.c:80
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
AV_CH_BACK_RIGHT
#define AV_CH_BACK_RIGHT
Definition: channel_layout.h:180
AV_CHAN_FRONT_LEFT
@ AV_CHAN_FRONT_LEFT
Definition: channel_layout.h:50
AV_SAMPLE_FMT_FLT
@ AV_SAMPLE_FMT_FLT
float
Definition: samplefmt.h:60
AVChannelCustom::id
enum AVChannel id
Definition: channel_layout.h:284
AV_CH_SIDE_LEFT
#define AV_CH_SIDE_LEFT
Definition: channel_layout.h:184
AV_MATRIX_ENCODING_DPLII
@ AV_MATRIX_ENCODING_DPLII
Definition: channel_layout.h:263
clean_layout
static int clean_layout(AVChannelLayout *out, const AVChannelLayout *in, void *s)
Definition: rematrix.c:90