31     if (!num_reuse_blocks)
 
   34     for (i = 0; i < nb_coefs; i++) {
 
   37         for (blk = 0; blk < num_reuse_blocks; blk++) {
 
   39             if (next_exp < min_exp)
 
   50     for (i = 0; i < 
len; i++)
 
   58     uint32_t *src32 = (uint32_t *)src;
 
   59     const uint32_t 
mask = ~(((1 << 
shift) - 1) << 16);
 
   62     for (i = 0; i < 
len; i += 8) {
 
   63         src32[i  ] = (src32[i  ] << 
shift) & mask;
 
   64         src32[i+1] = (src32[i+1] << 
shift) & mask;
 
   65         src32[i+2] = (src32[i+2] << 
shift) & mask;
 
   66         src32[i+3] = (src32[i+3] << 
shift) & mask;
 
   67         src32[i+4] = (src32[i+4] << 
shift) & mask;
 
   68         src32[i+5] = (src32[i+5] << 
shift) & mask;
 
   69         src32[i+6] = (src32[i+6] << 
shift) & mask;
 
   70         src32[i+7] = (src32[i+7] << 
shift) & mask;
 
   92     const float scale = 1 << 24;
 
   94         *dst++ = 
lrintf(*src++ * scale);
 
   95         *dst++ = 
lrintf(*src++ * scale);
 
   96         *dst++ = 
lrintf(*src++ * scale);
 
   97         *dst++ = 
lrintf(*src++ * scale);
 
   98         *dst++ = 
lrintf(*src++ * scale);
 
   99         *dst++ = 
lrintf(*src++ * scale);
 
  100         *dst++ = 
lrintf(*src++ * scale);
 
  101         *dst++ = 
lrintf(*src++ * scale);
 
  108                                      int snr_offset, 
int floor,
 
  111     int bin, 
band, band_end;
 
  114     if (snr_offset == -960) {
 
  122         int m = (
FFMAX(mask[band] - snr_offset - floor, 0) & 0x1FE0) + floor;
 
  124         band_end = 
FFMIN(band_end, end);
 
  126         for (; bin < band_end; bin++) {
 
  127             int address = av_clip_uintp2((psd[bin] - m) >> 5, 6);
 
  128             bap[bin] = bap_tab[address];
 
  130     } 
while (end > band_end);
 
  137         mant_cnt[bap[
len]]++;
 
  141     0,  0,  0,  3,  0,  4,  5,  6,  7,  8,  9, 10, 11, 12, 14, 16
 
  151         bits += (mant_cnt[
blk][1] / 3) * 5;
 
  154         bits += ((mant_cnt[
blk][2] / 3) + (mant_cnt[blk][4] >> 1)) * 7;
 
  156         bits += mant_cnt[
blk][3] * 3;
 
  158         for (bap = 5; bap < 16; bap++)
 
  168     for (i = 0; i < nb_coefs; i++) {
 
  169         int v = abs(coef[i]);
 
  170         exp[i] = v ? 23 - 
av_log2(v) : 24;
 
  181     sum[0] = sum[1] = sum[2] = sum[3] = 0;
 
  183     for (i = 0; i < 
len; i++) {
 
  188         MAC64(sum[0], lt, lt);
 
  189         MAC64(sum[1], rt, rt);
 
  190         MAC64(sum[2], md, md);
 
  191         MAC64(sum[3], sd, sd);
 
  202     sum[0] = sum[1] = sum[2] = sum[3] = 0;
 
  204     for (i = 0; i < 
len; i++) {
 
  221     float front_mix    = matrix[0][0];
 
  222     float center_mix   = matrix[0][1];
 
  223     float surround_mix = matrix[0][3];
 
  225     for (i = 0; i < 
len; i++) {
 
  226         v0 = samples[0][i] * front_mix  +
 
  227              samples[1][i] * center_mix +
 
  228              samples[3][i] * surround_mix;
 
  230         v1 = samples[1][i] * center_mix +
 
  231              samples[2][i] * front_mix  +
 
  232              samples[4][i] * surround_mix;
 
  243     float front_mix    = matrix[0][0];
 
  244     float center_mix   = matrix[0][1];
 
  245     float surround_mix = matrix[0][3];
 
  247     for (i = 0; i < 
len; i++) {
 
  248         samples[0][i] = samples[0][i] * front_mix    +
 
  249                         samples[1][i] * center_mix   +
 
  250                         samples[2][i] * front_mix    +
 
  251                         samples[3][i] * surround_mix +
 
  252                         samples[4][i] * surround_mix;
 
  257                           int out_ch, 
int in_ch, 
int len)
 
  263         for (i = 0; i < 
len; i++) {
 
  265             for (j = 0; j < in_ch; j++) {
 
  266                 v0 += samples[j][i] * matrix[0][j];
 
  267                 v1 += samples[j][i] * matrix[1][j];
 
  272     } 
else if (out_ch == 1) {
 
  273         for (i = 0; i < 
len; i++) {
 
  275             for (j = 0; j < in_ch; j++)
 
  276                 v0 += samples[j][i] * matrix[0][j];
 
  287     int16_t front_mix    = matrix[0][0];
 
  288     int16_t center_mix   = matrix[0][1];
 
  289     int16_t surround_mix = matrix[0][3];
 
  291     for (i = 0; i < 
len; i++) {
 
  292         v0 = (int64_t)samples[0][i] * front_mix  +
 
  293              (int64_t)samples[1][i] * center_mix +
 
  294              (int64_t)samples[3][i] * surround_mix;
 
  296         v1 = (int64_t)samples[1][i] * center_mix +
 
  297              (int64_t)samples[2][i] * front_mix  +
 
  298              (int64_t)samples[4][i] * surround_mix;
 
  300         samples[0][i] = (v0+2048)>>12;
 
  301         samples[1][i] = (v1+2048)>>12;
 
  310     int16_t front_mix    = matrix[0][0];
 
  311     int16_t center_mix   = matrix[0][1];
 
  312     int16_t surround_mix = matrix[0][3];
 
  314     for (i = 0; i < 
len; i++) {
 
  315         v0 = (int64_t)samples[0][i] * front_mix    +
 
  316              (int64_t)samples[1][i] * center_mix   +
 
  317              (int64_t)samples[2][i] * front_mix    +
 
  318              (int64_t)samples[3][i] * surround_mix +
 
  319              (int64_t)samples[4][i] * surround_mix;
 
  321         samples[0][i] = (v0+2048)>>12;
 
  326                                 int out_ch, 
int in_ch, 
int len)
 
  331         for (i = 0; i < 
len; i++) {
 
  333             for (j = 0; j < in_ch; j++) {
 
  334                 v0 += (int64_t)samples[j][i] * matrix[0][j];
 
  335                 v1 += (int64_t)samples[j][i] * matrix[1][j];
 
  337             samples[0][i] = (v0+2048)>>12;
 
  338             samples[1][i] = (v1+2048)>>12;
 
  340     } 
else if (out_ch == 1) {
 
  341         for (i = 0; i < 
len; i++) {
 
  343             for (j = 0; j < in_ch; j++)
 
  344                 v0 += (int64_t)samples[j][i] * matrix[0][j];
 
  345             samples[0][i] = (v0+2048)>>12;
 
  351                              int out_ch, 
int in_ch, 
int len)
 
  358         if (in_ch == 5 && out_ch == 2 &&
 
  359             !(matrix[1][0] | matrix[0][2]  |
 
  360               matrix[1][3] | matrix[0][4]  |
 
  361              (matrix[0][1] ^ matrix[1][1]) |
 
  362              (matrix[0][0] ^ matrix[1][2]))) {
 
  364         } 
else if (in_ch == 5 && out_ch == 1 &&
 
  365                    matrix[0][0] == matrix[0][2] &&
 
  366                    matrix[0][3] == matrix[0][4]) {
 
  383     for (i = 0; i < len2; i++) {
 
  384         int16_t w       = window[i];
 
  385         output[i]       = (
MUL16(input[i],       w) + (1 << 14)) >> 15;
 
  386         output[len-i-1] = (
MUL16(input[len-i-1], w) + (1 << 14)) >> 15;
 
  391                        int out_ch, 
int in_ch, 
int len)
 
  394         int **matrix_cmp = (
int **)matrix;
 
  400         if (in_ch == 5 && out_ch == 2 &&
 
  401             !(matrix_cmp[1][0] | matrix_cmp[0][2]   |
 
  402               matrix_cmp[1][3] | matrix_cmp[0][4]   |
 
  403              (matrix_cmp[0][1] ^ matrix_cmp[1][1]) |
 
  404              (matrix_cmp[0][0] ^ matrix_cmp[1][2]))) {
 
  406         } 
else if (in_ch == 5 && out_ch == 1 &&
 
  407                    matrix_cmp[0][0] == matrix_cmp[0][2] &&
 
  408                    matrix_cmp[0][3] == matrix_cmp[0][4]) {
 
  417         c->
downmix(samples, matrix, len);
 
void(* ac3_rshift_int32)(int32_t *src, unsigned int len, unsigned int shift)
Right-shift each value in an array of int32_t by a specified amount. 
void ff_ac3dsp_downmix(AC3DSPContext *c, float **samples, float **matrix, int out_ch, int in_ch, int len)
void(* float_to_fixed24)(int32_t *dst, const float *src, unsigned int len)
Convert an array of float in range [-1.0,1.0] to int32_t with range [-(1<<24),(1<<24)]. 
static int shift(int a, int b)
static void ac3_downmix_5_to_2_symmetric_c_fixed(int32_t **samples, int16_t **matrix, int len)
void(* downmix)(float **samples, float **matrix, int len)
void ff_ac3dsp_set_downmix_x86(AC3DSPContext *c)
void ff_ac3dsp_init_mips(AC3DSPContext *c, int bit_exact)
void(* sum_square_butterfly_float)(float sum[4], const float *coef0, const float *coef1, int len)
static const uint8_t bap_tab[64]
const uint8_t ff_ac3_bin_to_band_tab[253]
Map each frequency coefficient bin to the critical band that contains it. 
static int ac3_max_msb_abs_int16_c(const int16_t *src, int len)
static av_cold int end(AVCodecContext *avctx)
int(* ac3_max_msb_abs_int16)(const int16_t *src, int len)
Calculate the maximum MSB of the absolute value of each element in an array of int16_t. 
static void ac3_downmix_5_to_2_symmetric_c(float **samples, float **matrix, int len)
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory. 
static void ac3_downmix_c_fixed(int32_t **samples, int16_t **matrix, int out_ch, int in_ch, int len)
void ff_ac3dsp_init_x86(AC3DSPContext *c, int bit_exact)
void ff_ac3dsp_init_arm(AC3DSPContext *c, int bit_exact)
static const uint16_t mask[17]
static void ac3_sum_square_butterfly_int32_c(int64_t sum[4], const int32_t *coef0, const int32_t *coef1, int len)
const uint8_t ff_ac3_band_start_tab[AC3_CRITICAL_BANDS+1]
Starting frequency coefficient bin for each critical band. 
static int ac3_compute_mantissa_size_c(uint16_t mant_cnt[6][16])
static SDL_Window * window
av_cold void ff_ac3dsp_init(AC3DSPContext *c, int bit_exact)
static void apply_window_int16_c(int16_t *output, const int16_t *input, const int16_t *window, unsigned int len)
void ff_ac3dsp_downmix_fixed(AC3DSPContext *c, int32_t **samples, int16_t **matrix, int out_ch, int in_ch, int len)
void(* extract_exponents)(uint8_t *exp, int32_t *coef, int nb_coefs)
void(* bit_alloc_calc_bap)(int16_t *mask, int16_t *psd, int start, int end, int snr_offset, int floor, const uint8_t *bap_tab, uint8_t *bap)
Calculate bit allocation pointers. 
Libavcodec external API header. 
static void ac3_update_bap_counts_c(uint16_t mant_cnt[16], uint8_t *bap, int len)
static void ac3_downmix_5_to_1_symmetric_c(float **samples, float **matrix, int len)
static void ac3_exponent_min_c(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
void(* apply_window_int16)(int16_t *output, const int16_t *input, const int16_t *window, unsigned int len)
Apply symmetric window in 16-bit fixed-point. 
static void ac3_rshift_int32_c(int32_t *src, unsigned int len, unsigned int shift)
static void ac3_extract_exponents_c(uint8_t *exp, int32_t *coef, int nb_coefs)
int(* compute_mantissa_size)(uint16_t mant_cnt[6][16])
Calculate the number of bits needed to encode a set of mantissas. 
void(* update_bap_counts)(uint16_t mant_cnt[16], uint8_t *bap, int len)
Update bap counts using the supplied array of bap. 
static void ac3_downmix_5_to_1_symmetric_c_fixed(int32_t **samples, int16_t **matrix, int len)
void(* downmix_fixed)(int32_t **samples, int16_t **matrix, int len)
const uint16_t ff_ac3_bap_bits[16]
Number of mantissa bits written for each bap value. 
void(* ac3_lshift_int16)(int16_t *src, unsigned int len, unsigned int shift)
Left-shift each value in an array of int16_t by a specified amount. 
void(* ac3_exponent_min)(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
Set each encoded exponent in a block to the minimum of itself and the exponents in the same frequency...
static void float_to_fixed24_c(int32_t *dst, const float *src, unsigned int len)
static void ac3_bit_alloc_calc_bap_c(int16_t *mask, int16_t *psd, int start, int end, int snr_offset, int floor, const uint8_t *bap_tab, uint8_t *bap)
void(* sum_square_butterfly_int32)(int64_t sum[4], const int32_t *coef0, const int32_t *coef1, int len)
static void ac3_downmix_c(float **samples, float **matrix, int out_ch, int in_ch, int len)
static void ac3_lshift_int16_c(int16_t *src, unsigned int len, unsigned int shift)
static void ac3_sum_square_butterfly_float_c(float sum[4], const float *coef0, const float *coef1, int len)
Common code between the AC-3 encoder and decoder.