Go to the documentation of this file.
41 static const uint8_t
rcon[10] = {
42 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
56 # define ROT(x, s) (((x) >> (s)) | ((x) << (32-(s))))
58 # define ROT(x, s) (((x) << (s)) | ((x) >> (32-(s))))
84 unsigned char *s1_dst = (
unsigned char*)s0[0].u8 + 3 -
s;
85 const unsigned char *s1_src = s1_dst +
sizeof(*s0);
86 unsigned char *s3_dst = (
unsigned char*)s0[0].u8 +
s + 1;
87 const unsigned char *s3_src = s3_dst +
sizeof(*s0);
89 s0[0].u8[ 0] = box[s0[1].u8[ 0]];
90 s0[0].u8[ 4] = box[s0[1].u8[ 4]];
91 s0[0].u8[ 8] = box[s0[1].u8[ 8]];
92 s0[0].u8[12] = box[s0[1].u8[12]];
93 s1_dst[ 0] = box[s1_src[ 4]];
94 s1_dst[ 4] = box[s1_src[ 8]];
95 s1_dst[ 8] = box[s1_src[12]];
96 s1_dst[12] = box[s1_src[ 0]];
97 s0[0].u8[ 2] = box[s0[1].u8[10]];
98 s0[0].u8[10] = box[s0[1].u8[ 2]];
99 s0[0].u8[ 6] = box[s0[1].u8[14]];
100 s0[0].u8[14] = box[s0[1].u8[ 6]];
101 s3_dst[ 0] = box[s3_src[12]];
102 s3_dst[12] = box[s3_src[ 8]];
103 s3_dst[ 8] = box[s3_src[ 4]];
104 s3_dst[ 4] = box[s3_src[ 0]];
107 static inline int mix_core(uint32_t multbl[][256],
int a,
int b,
int c,
int d)
110 return multbl[0][
a] ^
ROT(multbl[0][
b], 8) ^
ROT(multbl[0][
c], 16) ^
ROT(multbl[0][d], 24);
112 return multbl[0][
a] ^ multbl[1][
b] ^ multbl[2][
c] ^ multbl[3][d];
126 uint32_t multbl[][256])
130 for (
r =
a->rounds - 1;
r > 0;
r--) {
131 mix(
a->state, multbl, 3 -
s, 1 +
s);
132 addkey(&
a->state[1], &
a->state[0], &
a->round_key[
r]);
139 int count, uint8_t *iv,
int rounds)
155 int count, uint8_t *iv,
int rounds)
171 int count, uint8_t *iv,
int decrypt)
173 a->crypt(
a,
dst,
src, count, iv,
a->rounds);
177 const uint8_t *log8,
const uint8_t *alog8,
182 for (
i = 0;
i < 256;
i++) {
187 k = alog8[x + log8[
c[0]]];
188 l = alog8[x + log8[
c[1]]];
189 m = alog8[x + log8[
c[2]]];
190 n = alog8[x + log8[
c[3]]];
193 tbl[1][
i] =
ROT(tbl[0][
i], 8);
194 tbl[2][
i] =
ROT(tbl[0][
i], 16);
195 tbl[3][
i] =
ROT(tbl[0][
i], 24);
209 for (
i = 0;
i < 255;
i++) {
210 alog8[
i] = alog8[
i + 255] = j;
216 for (
i = 0;
i < 256;
i++) {
217 j =
i ? alog8[255 - log8[
i]] : 0;
218 j ^= (j << 1) ^ (j << 2) ^ (j << 3) ^ (j << 4);
219 j = (j ^ (j >> 8) ^ 99) & 255;
232 int i, j, t, rconpointer = 0;
234 int KC = key_bits >> 5;
244 if (key_bits != 128 && key_bits != 192 && key_bits != 256)
247 memcpy(tk,
key, KC * 4);
248 memcpy(
a->round_key[0].u8,
key, KC * 4);
250 for (t = KC * 4; t < (
rounds + 1) * 16; t += KC * 4) {
251 for (
i = 0;
i < 4;
i++)
252 tk[0][
i] ^=
sbox[tk[KC - 1][(
i + 1) & 3]];
253 tk[0][0] ^=
rcon[rconpointer++];
255 for (j = 1; j < KC; j++) {
256 if (KC != 8 || j != KC >> 1)
257 for (
i = 0;
i < 4;
i++)
258 tk[j][
i] ^= tk[j - 1][
i];
260 for (
i = 0;
i < 4;
i++)
261 tk[j][
i] ^=
sbox[tk[j - 1][
i]];
264 memcpy((
unsigned char*)
a->round_key + t, tk, KC * 4);
270 tmp[2] =
a->round_key[
i];
273 a->round_key[
i] =
tmp[0];
static uint32_t enc_multbl[4][256]
int av_aes_init(AVAES *a, const uint8_t *key, int key_bits, int decrypt)
Initialize an AVAES context.
static void mix(av_aes_block state[2], uint32_t multbl[][256], int s1, int s3)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static void aes_crypt(AVAES *a, int s, const uint8_t *sbox, uint32_t multbl[][256])
static void subshift(av_aes_block s0[2], int s, const uint8_t *box)
static void addkey_d(uint8_t *dst, const av_aes_block *src, const av_aes_block *round_key)
static void addkey(av_aes_block *dst, const av_aes_block *src, const av_aes_block *round_key)
static int mix_core(uint32_t multbl[][256], int a, int b, int c, int d)
static void addkey_s(av_aes_block *dst, const uint8_t *src, const av_aes_block *round_key)
static const uint8_t rcon[10]
static int ff_thread_once(char *control, void(*routine)(void))
static void aes_init_static(void)
void av_aes_crypt(AVAES *a, uint8_t *dst, const uint8_t *src, int count, uint8_t *iv, int decrypt)
Encrypt or decrypt a buffer using a previously initialized context.
struct AVAES * av_aes_alloc(void)
Allocate an AVAES context.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
av_aes_block round_key[15]
static uint8_t inv_sbox[256]
#define MKBETAG(a, b, c, d)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
static void aes_decrypt(AVAES *a, uint8_t *dst, const uint8_t *src, int count, uint8_t *iv, int rounds)
#define i(width, name, range_min, range_max)
void ff_init_aes_x86(AVAES *a, int decrypt)
static AVOnce aes_static_init
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
#define FFSWAP(type, a, b)
#define MKTAG(a, b, c, d)
static uint32_t dec_multbl[4][256]
static void aes_encrypt(AVAES *a, uint8_t *dst, const uint8_t *src, int count, uint8_t *iv, int rounds)
static void init_multbl2(uint32_t tbl[][256], const int c[4], const uint8_t *log8, const uint8_t *alog8, const uint8_t *sbox)