Go to the documentation of this file.
99 #define MAX_VLC_SIZE 864
105 int counts[17] = {0};
112 codes[0] = counts[0] = 0;
113 for (
int i = 0;
i < 17;
i++)
114 codes[
i+1] = (codes[
i] + counts[
i]) << 1;
126 for (
int i = 0;
i < count;
i++) {
127 for (
int j = 0; j < 2; j++) {
140 for (
int i = 0;
i < 7;
i++)
141 for (
int j = 0; j < 4; j++)
144 for (
int i = 0;
i < 7;
i++)
145 for (
int j = 0; j < 3; j++)
146 for (
int k = 0; k < 4; k++)
162 uint8_t cu_split[1+4+16+64];
164 uint8_t coded_blk[64];
166 uint8_t avg_buffer[64*64 + 32*32*2];
167 uint8_t * avg_data[3];
235 if (
s->nb_progress < count) {
240 memset(
s->progress +
s->nb_progress, 0, (count -
s->nb_progress) *
sizeof(*
s->progress));
241 for (
int i =
s->nb_progress;
i < count;
i++) {
245 s->nb_progress =
i + 1;
249 for (
int i = 0;
i < count;
i++)
266 for (
int i = 0;
i < 3;
i++) {
268 if (!
s->last_frame[
i])
281 if (
width !=
s->avctx->width ||
height !=
s->avctx->height) {
285 for (
int i = 0;
i < 3;
i++)
291 if (
s->avctx->width <= 64 ||
s->avctx->height <= 64)
292 av_log(
s->avctx,
AV_LOG_WARNING,
"unable to faithfully reproduce emulated edges; expect visual artefacts\n");
298 s->cu_width = (
width + 63) >> 6;
299 s->cu_height = (
height + 63) >> 6;
301 s->pu_stride =
s->cu_width << 3;
302 s->blk_stride =
s->cu_width << 4;
313 memset(
s->pu_info, 0,
s->pu_stride * (
s->cu_height << 3) *
sizeof(
s->pu_info[0]));
315 for (
int j = 0; j <
s->cu_height << 4; j++)
316 for (
int i = 0;
i <
s->cu_width << 4;
i++)
322 s->dblk_stride =
s->awidth >> 2;
324 size =
s->dblk_stride * (
s->aheight >> 2);
332 memset(
s->top_str, 0,
size);
333 memset(
s->left_str, 0,
size);
385 for (
int i = 0;
i < count;
i++)
386 for (
int j = 0; j < 2 <<
i; j++)
399 for (
int i = 0;
i <
s->cu_height;
i++)
407 for (
int i = 1;
i <
s->cu_height;
i++) {
409 if (
s->slice[
i].sign)
415 s->slice[
i].size = last_size;
435 return ypos + dy && xpos + dx +
size <=
s->awidth;
440 return xpos + dx && ypos + dy +
size <=
s->aheight;
489 memset(
i->t, 0x80,
sizeof(
i->t));
490 memset(
i->l, 0x80,
sizeof(
i->l));
491 i->has_t =
i->has_tr =
i->has_l =
i->has_ld = 0;
503 if (cu->
ypos + yoff > 0) {
515 if (cu->
xpos + xoff > 0)
519 if (cu->
xpos + xoff > 0) {
522 for (
int y = 0; y <
size; y++)
528 for (
int y =
size; y <
size * 2; y++)
533 if (cu->
ypos + yoff > 0)
540 int lastl =
p->l[
size + 1];
541 int lastt =
p->t[
size + 1];
542 int tmp1[64], tmp2[64];
543 int top_ref[64], left_ref[64];
546 for (
int i = 0;
i <
size;
i++) {
547 tmp1[
i] = lastl -
p->t[
i + 1];
548 tmp2[
i] = lastt -
p->l[
i + 1];
552 for (
int i = 0;
i <
size;
i++) {
553 top_ref[
i] =
p->t[
i + 1] << (
shift - 1);
554 left_ref[
i] =
p->l[
i + 1] << (
shift - 1);
557 for (
int y = 0; y <
size; y++) {
559 int sum = left_ref[y] +
size;
560 for (
int x = 0; x <
size; x++) {
561 int v = tmp1[x] + top_ref[x];
573 if (!
p->has_t && !
p->has_l)
578 for (
int x = 0; x <
size; x++)
581 for (
int y = 0; y <
size; y++)
583 if (
p->has_t &&
p->has_l)
589 for (
int y = 0; y <
size; y++)
592 if (
filter &&
p->has_t &&
p->has_l) {
593 dst[0] = (
p->t[1] +
p->l[1] + 2 *
dst[0] + 2) >> 2;
594 for (
int x = 1; x <
size; x++)
595 dst[x] = (
p->t[x + 1] + 3 *
dst[x] + 2) >> 2;
596 for (
int y = 1; y <
size; y++)
604 for (
int i = 1;
i <
size - 1;
i++)
612 int sum = (v0 << 5) + (1 << (5 - 1));
613 for (
int i = 0;
i <
size;
i++) {
622 for (
int x = 0; x <
size; x++) {
625 off = (sum >> 5) + 32;
628 for (
int y = 0; y <
size; y++)
631 for (
int y = 0; y <
size; y++) {
632 int a =
src[off + y];
633 int b =
src[off + y + 1];
634 dst[y*
stride + x] = ((32 - frac) *
a + frac *
b + 16) >> 5;
643 for (
int y = 0; y <
size; y++) {
646 off = (sum >> 5) + 32;
651 for (
int x = 0; x <
size; x++) {
652 int a =
src[off + x];
653 int b =
src[off + x + 1];
654 dst[y*
stride + x] = ((32 - frac) *
a + frac *
b + 16) >> 5;
662 uint8_t filtered1[96], filtered2[96];
666 }
else if (imode == 1) {
668 }
else if (imode <= 9) {
670 int add_size = (
size * ang_weight + 31) >> 5;
678 }
else if (imode == 10) {
683 for (
int y = 0; y <
size; y++)
684 for (
int x = 0; x <
size; x++)
688 for (
int x = 0; x <
size; x++)
691 }
else if (imode <= 17) {
694 int add_size = (
size * ang_weight + 31) >> 5;
696 memcpy(filtered1 + 32 - 1,
p->l,
size + 1);
697 memcpy(filtered2 + 32 - 1,
p->t,
size + 1);
699 filtered1[32 - 1] =
p->l[0];
701 filtered2[32 - 1] =
p->t[0];
706 for (
int i = 1;
i < add_size;
i++) {
708 filtered1[32 - 1 -
i] = filtered2[32 - 1 + (sum >> 8)];
712 }
else if (imode <= 25) {
715 int add_size = (
size * ang_weight + 31) >> 5;
717 memcpy(filtered1 + 32 - 1,
p->t,
size + 1);
718 memcpy(filtered2 + 32 - 1,
p->l,
size + 1);
720 filtered1[32 - 1] =
p->t[0];
722 filtered2[32 - 1] =
p->l[0];
727 for (
int i = 1;
i < add_size;
i++) {
729 filtered1[32 - 1 -
i] = filtered2[32 - 1 + (sum >> 8)];
733 }
else if (imode == 26) {
742 for (
int y = 0; y <
size; y++)
745 }
else if (imode <= 34) {
747 int add_size = (
size * ang_weight + 31) >> 5;
770 #define MK_UNIQUELIST(name, type, max_size) \
772 type list[max_size]; \
774 } unique_list_##name; \
776 static void unique_list_##name##_init(unique_list_##name * s) \
778 memset(s->list, 0, sizeof(s->list)); \
782 static void unique_list_##name##_add(unique_list_##name * s, type cand) \
784 if (s->size == max_size) \
787 for (int i = 0; i < s->size; i++) { \
788 if (!memcmp(&s->list[i], &cand, sizeof(type))) { \
792 s->list[s->size++] = cand; \
800 int blk_pos, tl_x, tl_y;
801 unique_list_intramode ipm_cand;
809 unique_list_intramode_init(&ipm_cand);
812 const PUInfo * pu = &
s->pu_info[cu->pu_pos -
s->pu_stride];
814 unique_list_intramode_add(&ipm_cand,
s->blk_info[cu->blk_pos -
s->blk_stride + (sub & 1)].imode);
817 blk_pos = cu->blk_pos + (sub >> 1) *
s->blk_stride + (sub & 1);
820 const PUInfo * pu = &
s->pu_info[cu->pu_pos - 1];
822 unique_list_intramode_add(&ipm_cand,
s->blk_info[blk_pos - 1 - (sub & 1)].imode);
825 tl_x = !(sub & 2) ? (cu->xpos + (sub & 1) * 4) : cu->xpos;
826 tl_y = cu->ypos + (sub & 2) * 4;
827 if (tl_x > 0 && tl_y > 0) {
830 case 0: pu = &
s->pu_info[cu->pu_pos -
s->pu_stride - 1];
break;
831 case 1: pu = &
s->pu_info[cu->pu_pos -
s->pu_stride];
break;
832 default: pu = &
s->pu_info[cu->pu_pos - 1];
836 unique_list_intramode_add(&ipm_cand,
s->blk_info[blk_pos -
s->blk_stride - 1].imode);
838 unique_list_intramode_add(&ipm_cand,
s->blk_info[blk_pos -
s->blk_stride - 2].imode);
846 return ipm_cand.list[cu->imode_param[sub]];
849 enum IntraMode imode = cu->imode_param[sub];
850 qsort(ipm_cand.list, 3,
sizeof(ipm_cand.list[0]),
ipm_compar);
851 for (
int i = 0;
i < 3;
i++)
852 if (imode >= ipm_cand.list[
i])
874 unique_list_mvinfo_add(skip_cand, *mvi);
879 int mv_size =
size >> 2;
885 if (cu->
ypos && cu->
xpos + size < s->awidth)
887 if (cu->
xpos && cu->
ypos + size < s->aheight)
896 for (
int i = skip_cand->size;
i < 4;
i++)
906 int mv_size =
size >> 2;
909 dim->w =
dim->h = mv_size;
913 dim->h = mv_size >> 1;
916 dim->w = mv_size >> 1;
920 dim->w =
dim->h = mv_size >> 1;
924 dim->h = !part_no ? (mv_size >> 2) : ((3 * mv_size) >> 2);
928 dim->h = !part_no ? ((3 * mv_size) >> 2) : (mv_size >> 2);
931 dim->w = !part_no ? (mv_size >> 2) : ((3 * mv_size) >> 2);
935 dim->w = !part_no ? ((3 * mv_size) >> 2) : (mv_size >> 2);
967 *mv_pos +=
dim->h*
s->blk_stride -
dim->w;
972 *mv_pos +=
dim->h *
s->blk_stride;
1009 if (
a->mvref !=
b->mvref)
1014 int dx =
a->f_mv.x -
b->f_mv.x;
1015 int dy =
a->f_mv.y -
b->f_mv.y;
1019 int dx =
a->b_mv.x -
b->b_mv.x;
1020 int dy =
a->b_mv.y -
b->b_mv.y;
1033 ret->x = a.x < c.x ? c.x : a.x; \
1036 ret->x = a.x < c.x ? a.x : c.x; \
1046 int mv_pos = mv_y *
s->blk_stride + mv_x;
1055 const MVInfo *
mv = &
s->blk_info[mv_pos - 1].mv;
1057 cand[cand_size++] =
mv->f_mv;
1060 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride].mv;
1062 cand[cand_size++] =
mv->f_mv;
1065 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride + mv_w].mv;
1067 cand[cand_size++] =
mv->f_mv;
1070 switch (cand_size) {
1076 f_mv.
x = (cand[0].
x + cand[1].
x) >> 1;
1077 f_mv.
y = (cand[0].
y + cand[1].
y) >> 1;
1080 mv_pred(&f_mv, cand[0], cand[1], cand[2]);
1090 dst->f_mv.x =
src->f_mv.x + f_mv.
x;
1091 dst->f_mv.y =
src->f_mv.y + f_mv.
y;
1097 const MVInfo *
mv = &
s->blk_info[mv_pos - 1].mv;
1099 cand[cand_size++] =
mv->b_mv;
1102 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride].mv;
1104 cand[cand_size++] =
mv->b_mv;
1107 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride + mv_w].mv;
1109 cand[cand_size++] =
mv->b_mv;
1112 switch (cand_size) {
1118 b_mv.
x = (cand[0].
x + cand[1].
x) >> 1;
1119 b_mv.
y = (cand[0].
y + cand[1].
y) >> 1;
1122 mv_pred(&b_mv, cand[0], cand[1], cand[2]);
1132 dst->b_mv.x =
src->b_mv.x + b_mv.
x;
1133 dst->b_mv.y =
src->b_mv.y + b_mv.
y;
1138 int pu_size =
size >> 3;
1140 int imode, mv_x, mv_y, mv_pos, count, mv_size;
1141 unique_list_mvinfo skip_cand;
1150 for (
int y = 0; y < 2; y++)
1151 for (
int x = 0; x < 2; x++)
1152 s->blk_info[cu->
blk_pos + y*
s->blk_stride + x].imode =
1160 for (
int y = 0; y < size >> 2; y++)
1161 for (
int x = 0; x < size >> 2; x++)
1162 s->blk_info[cu->
blk_pos + y*
s->blk_stride + x].imode = imode;
1165 mv_x = cu->
xpos >> 2;
1166 mv_y = cu->
ypos >> 2;
1169 for (
int part_no = 0; part_no < count; part_no++) {
1173 for (
int y = 0; y <
dim.h; y++)
1174 for (
int x = 0; x <
dim.w; x++)
1175 s->blk_info[mv_pos + y*
s->blk_stride + x].mv =
mv;
1180 unique_list_mvinfo_init(&skip_cand);
1183 mv_size =
size >> 2;
1184 for (
int y = 0; y < mv_size; y++)
1185 for (
int x = 0; x < mv_size; x++)
1186 s->blk_info[cu->
blk_pos + y*
s->blk_stride + x].mv =
mv;
1189 for (
int y = 0; y < pu_size; y++)
1190 for (
int x = 0; x < pu_size; x++)
1191 s->pu_info[cu->
pu_pos + y*
s->pu_stride + x] = pui;
1228 #define FILTER1(src, src_stride, src_y_ofs, step) \
1229 ( (src)[(y + src_y_ofs)*(src_stride) + x - 2*step] \
1230 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x - 1*step] \
1231 +52 * (src)[(y + src_y_ofs)*(src_stride) + x ] \
1232 +20 * (src)[(y + src_y_ofs)*(src_stride) + x + 1*step] \
1233 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x + 2*step] \
1234 + (src)[(y + src_y_ofs)*(src_stride) + x + 3*step] + 32) >> 6
1236 #define FILTER2(src, src_stride, src_y_ofs, step) \
1237 ( (src)[(y + src_y_ofs)*(src_stride) + x - 2*step] \
1238 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x - 1*step] \
1239 +20 * (src)[(y + src_y_ofs)*(src_stride) + x ] \
1240 +20 * (src)[(y + src_y_ofs)*(src_stride) + x + 1*step] \
1241 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x + 2*step] \
1242 + (src)[(y + src_y_ofs)*(src_stride) + x + 3*step] + 16) >> 5
1244 #define FILTER3(src, src_stride, src_y_ofs, step) \
1245 ( (src)[(y + src_y_ofs)*(src_stride) + x - 2*step] \
1246 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x - 1*step] \
1247 +20 * (src)[(y + src_y_ofs)*(src_stride) + x ] \
1248 +52 * (src)[(y + src_y_ofs)*(src_stride) + x + 1*step] \
1249 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x + 2*step] \
1250 + (src)[(y + src_y_ofs)*(src_stride) + x + 3*step] + 32) >> 6
1252 #define FILTER_CASE(idx, dst, dst_stride, filter, w, h) \
1254 for (int y = 0; y < h; y++) \
1255 for (int x = 0; x < w; x++) \
1256 (dst)[y*dst_stride + x] = av_clip_uint8(filter); \
1259 #define FILTER_BLOCK(dst, dst_stride, src, src_stride, src_y_ofs, w, h, cond, step) \
1261 FILTER_CASE(1, dst, dst_stride, FILTER1(src, src_stride, src_y_ofs, step), w, h) \
1262 FILTER_CASE(2, dst, dst_stride, FILTER2(src, src_stride, src_y_ofs, step), w, h) \
1263 FILTER_CASE(3, dst, dst_stride, FILTER3(src, src_stride, src_y_ofs, step), w, h) \
1266 static void luma_mc(uint8_t *
dst,
int dst_stride,
const uint8_t *
src,
int src_stride,
int w,
int h,
int cx,
int cy)
1269 for (
int y = 0; y <
h; y++)
1270 memcpy(
dst + y*dst_stride,
src + y*src_stride,
w);
1275 }
else if (cx != 3 || cy != 3) {
1276 uint8_t
tmp[70 * 64];
1280 for (
int j = 0; j <
h; j++)
1281 for (
int i = 0;
i <
w;
i++)
1282 dst[j*dst_stride +
i] = (
1283 src[j*src_stride +
i] +
1284 src[j*src_stride +
i + 1] +
1285 src[(j + 1)*src_stride +
i] +
1286 src[(j + 1)*src_stride +
i + 1] + 2) >> 2;
1290 static void chroma_mc(uint8_t *
dst,
int dst_stride,
const uint8_t *
src,
int src_stride,
int w,
int h,
int x,
int y)
1293 for (
int j = 0; j <
h; j++)
1294 memcpy(
dst + j*dst_stride,
src + j*src_stride,
w);
1295 }
else if (x > 0 && y > 0) {
1298 if (x == 3 && y == 3)
1301 a = (4 - x) * (4 - y);
1305 for (
int j = 0; j <
h; j++)
1306 for (
int i = 0;
i <
w;
i++)
1307 dst[j*dst_stride +
i] =
1308 (
a *
src[j*src_stride +
i] +
1309 b *
src[j*src_stride +
i + 1] +
1310 c *
src[(j + 1)*src_stride +
i] +
1311 d *
src[(j + 1)*src_stride +
i + 1] + 8) >> 4;
1313 int a = (4 - x) * (4 - y);
1314 int e = x * (4 - y) + (4 - x) * y;
1315 int step = y > 0 ? src_stride : 1;
1316 for (
int j = 0; j <
h; j++)
1317 for (
int i = 0;
i <
w;
i++)
1318 dst[j*dst_stride +
i] =
1319 (
a *
src[j*src_stride +
i] +
1320 e *
src[j*src_stride +
i +
step] + 8) >> 4;
1324 static int check_pos(
int x,
int y,
int cw,
int ch,
int w,
int h,
int dx,
int dy,
int e0,
int e1,
int e2,
int e3)
1328 return x2 - e0 >= 0 && x2 + cw + e1 <=
w && y2 - e2 >= 0 && y2 + ch + e3 <=
h;
1334 int off = !
avg ? y * frame_linesize[0] + x : 0;
1336 int fh =
s->aheight;
1342 if (
check_pos(x, y,
w,
h, fw, fh, dx, dy,
rv60_edge1[cx],
rv60_edge2[cx],
rv60_edge1[cy],
rv60_edge2[cy])) {
1346 ref->data[0] + (y + dy) *
ref->linesize[0] + x + dx,
1351 int xoff = x + dx - 2;
1352 int yoff = y + dy - 2;
1353 s->vdsp.emulated_edge_mc(buf,
1354 ref->data[0] + yoff *
ref->linesize[0] + xoff,
1355 70,
ref->linesize[0],
1361 buf + 70 * 2 + 2, 70,
w,
h, cx, cy);
1365 int fw =
s->awidth >> 1;
1366 int fh =
s->aheight >> 1;
1376 for (
int plane = 1; plane < 3; plane++) {
1377 int off = !
avg ? (y >> 1) * frame_linesize[plane] + (x >> 1) : 0;
1378 if (
check_pos(x >> 1, y >> 1, cw, ch, fw, fh, dx, dy, 0, 1, 0, 1)) {
1381 frame_linesize[plane],
1382 ref->data[plane] + ((y >> 1) + dy) *
ref->linesize[plane] + (x >> 1) + dx,
1383 ref->linesize[plane],
1387 s->vdsp.emulated_edge_mc(buf,
1388 ref->data[plane] + ((y >> 1) + dy) *
ref->linesize[plane] + (x >> 1) + dx,
1389 40,
ref->linesize[plane],
1391 (x >> 1) + dx, (y >> 1) + dy,
1399 static void avg_plane(uint8_t *
dst,
int dst_stride,
const uint8_t *
src,
int src_stride,
int w,
int h)
1401 for (
int j = 0; j <
h; j++)
1402 for (
int i = 0;
i <
w;
i++)
1403 dst[j*dst_stride +
i] = (
dst[j*dst_stride +
i] +
src[j*src_stride +
i]) >> 1;
1406 static void avg(
AVFrame *
frame, uint8_t * prev_frame_data[3],
int prev_frame_linesize[3],
int x,
int y,
int w,
int h)
1408 for (
int plane = 0; plane < 3; plane++) {
1409 int shift = !plane ? 0 : 1;
1411 prev_frame_data[plane], prev_frame_linesize[plane],
1426 return (v * q + 8) >> 4;
1434 return inval &&
get_bits1(gb) ? -inval : inval;
1438 int esc_bits = esc_sym - 23;
1439 val += (1 << esc_bits) +
get_bits(gb, esc_bits) + 22;
1486 int sym0 =
get_vlc2(gb, vlcs->
l0[!is_luma], 9, 2);
1487 int grp0 = sym0 >> 3;
1493 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1497 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1501 int grp =
get_vlc2(gb, vlcs->
l3[!is_luma], 9, 2);
1508 int sym0 =
get_vlc2(gb, vlcs->
l0[!is_luma], 9, 2);
1509 int grp0 = (sym0 >> 3);
1515 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1519 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1523 int grp =
get_vlc2(gb, vlcs->
l3[!is_luma], 9, 2);
1536 memset(y_coeffs, 0,
sizeof(y_coeffs[0])*256);
1537 for (
int i = 0;
i < 16;
i++)
1541 memset(u_coeffs, 0,
sizeof(u_coeffs[0])*64);
1542 for (
int i = 0;
i < 4;
i++)
1543 if ((cbp >> (16 +
i)) & 1)
1546 memset(v_coeffs, 0,
sizeof(v_coeffs[0])*64);
1547 for (
int i = 0;
i < 4;
i++)
1548 if ((cbp >> (20 +
i)) & 1)
1558 static void decode_cu_8x8(
GetBitContext * gb,
int is_intra,
int qp,
int sel_qp, int16_t * y_coeffs, int16_t * u_coeffs, int16_t * v_coeffs,
int ccbp,
int mode4x4)
1566 memset(y_coeffs, 0,
sizeof(y_coeffs[0])*64);
1567 for (
int i = 0;
i < 4;
i++) {
1568 if ((ccbp >>
i) & 1) {
1574 offset = (
i & 1) * 4 + (
i & 2) * 2 * 8;
1581 if ((ccbp >> 4) & 1) {
1582 memset(u_coeffs, 0,
sizeof(u_coeffs[0])*16);
1586 if ((ccbp >> 5) & 1) {
1587 memset(v_coeffs, 0,
sizeof(u_coeffs[0])*16);
1600 memset(y_coeffs, 0,
sizeof(y_coeffs[0])*256);
1601 for (
int i = 0;
i < 16;
i++)
1602 if ((ccbp >>
i) & 1) {
1603 int off = (
i & 3) * 4 + (
i >> 2) * 4 * 16;
1607 memset(u_coeffs, 0,
sizeof(u_coeffs[0])*64);
1608 for (
int i = 0;
i < 4;
i++)
1609 if ((ccbp >> (16 +
i)) & 1) {
1610 int off = (
i & 1) * 4 + (
i & 2) * 2 * 8;
1617 memset(v_coeffs, 0,
sizeof(v_coeffs[0])*64);
1618 for (
int i = 0;
i < 4;
i++)
1619 if ((ccbp >> (20 +
i)) & 1) {
1620 int off = (
i & 1) * 4 + (
i & 2) * 2 * 8;
1630 int sym0 =
get_vlc2(gb, vlc[0], 9, 2);
1631 int sym1 =
get_vlc2(gb, vlc[1], 9, 2);
1632 int sym2 =
get_vlc2(gb, vlc[2], 9, 2);
1633 int sym3 =
get_vlc2(gb, vlc[3], 9, 2);
1635 + ((sym0 & 0x03) << 0)
1636 + ((sym0 & 0x0C) << 2)
1637 + ((sym0 & 0x10) << 12)
1638 + ((sym0 & 0x20) << 15)
1639 + ((sym1 & 0x03) << 2)
1640 + ((sym1 & 0x0C) << 4)
1641 + ((sym1 & 0x10) << 13)
1642 + ((sym1 & 0x20) << 16)
1643 + ((sym2 & 0x03) << 8)
1644 + ((sym2 & 0x0C) << 10)
1645 + ((sym2 & 0x10) << 14)
1646 + ((sym2 & 0x20) << 17)
1647 + ((sym3 & 0x03) << 10)
1648 + ((sym3 & 0x0C) << 12)
1649 + ((sym3 & 0x10) << 15)
1650 + ((sym3 & 0x20) << 18);
1661 int size = 1 << log_size;
1662 int split,
ret, ttype, count, is_intra, cu_pos, subset, cbp8, imode, split_i4x4, num_clusters, cl_cbp, super_cbp, mv_x, mv_y, mv_pos;
1663 int16_t y_coeffs[16*16], u_coeffs[8*8], v_coeffs[8*8];
1666 if (xpos >=
s->awidth || ypos >=
s->aheight)
1684 cu.
pu_pos = (xpos >> 3) + (ypos >> 3) *
s->pu_stride;
1685 cu.
blk_pos = (xpos >> 2) + (ypos >> 2) *
s->blk_stride;
1692 for (
int i = 0;
i < 4;
i++)
1694 else if (
size <= 32)
1702 for (
int i = 0;
i < count;
i++)
1717 imode =
s->blk_info[cu.
blk_pos].imode;
1719 int off = ypos *
frame->linesize[0] + xpos;
1724 for (
int plane = 1; plane < 3; plane++) {
1725 int off = (ypos >> 1) *
frame->linesize[plane] + (xpos >> 1);
1734 mv_pos = mv_y *
s->blk_stride + mv_x;
1736 for (
int part_no = 0; part_no < count; part_no++) {
1741 mv =
s->blk_info[mv_pos].mv;
1748 if (!(
mv.mvref & 2)) {
1749 if (!
s->last_frame[
LAST_PIC]->data[0]) {
1755 if (!
s->last_frame[
NEXT_PIC]->data[0]) {
1786 else if (
size >= 32)
1788 else if (
size == 16)
1796 cu_pos = ((xpos & 63) >> 3) + ((ypos & 63) >> 3) * 8;
1800 subset = is_intra ? 0 : 2;
1805 for (
int y = 0; y < 4; y++)
1806 for (
int x = 0; x < 4; x++) {
1808 if ((cbp16 >>
i) & 1) {
1809 int off = (ypos + y * 4)*
frame->linesize[0] + xpos + x * 4;
1811 thread->
coded_blk[cu_pos + (y/2)*8 + (x/2)] = 1;
1814 for (
int y = 0; y < 2; y++)
1815 for (
int x = 0; x < 2; x++) {
1817 int xoff = (xpos >> 1) + x * 4;
1818 int yoff = (ypos >> 1) + y * 4;
1819 if ((cbp16 >> (16 +
i)) & 1) {
1820 int off = yoff *
frame->linesize[1] + xoff;
1822 thread->
coded_blk[cu_pos + y*8 + x] = 1;
1824 if ((cbp16 >> (20 +
i)) & 1) {
1825 int off = yoff *
frame->linesize[2] + xoff;
1827 thread->
coded_blk[cu_pos + y*8 + x] = 1;
1835 decode_cu_8x8(gb, is_intra, qp, sel_qp, y_coeffs, u_coeffs, v_coeffs, cbp8, 1);
1837 for (
int i = 0;
i < 4;
i++) {
1838 int xoff = (
i & 1) << 2;
1839 int yoff = (
i & 2) << 1;
1841 int off = (ypos + yoff) *
frame->linesize[0] + xpos + xoff;
1842 int imode =
s->blk_info[cu.
blk_pos + (
i >> 1) *
s->blk_stride + (
i & 1)].imode;
1847 if ((cbp8 >>
i) & 1) {
1848 int off = (ypos + yoff) *
frame->linesize[0] + xpos + xoff;
1852 if ((cbp8 >> 4) & 1) {
1853 int off = (ypos >> 1) *
frame->linesize[1] + (xpos >> 1);
1856 if ((cbp8 >> 5) & 1) {
1857 int off = (ypos >> 1) *
frame->linesize[2] + (xpos >> 1);
1863 subset = is_intra ? 1 : 3;
1867 decode_cu_8x8(gb, is_intra, qp, sel_qp, y_coeffs, u_coeffs, v_coeffs, cbp8, 0);
1869 int off = ypos *
frame->linesize[0] + xpos;
1872 if ((cbp8 >> 4) & 1) {
1873 int off = (ypos >> 1) *
frame->linesize[1] + (xpos >> 1);
1876 if ((cbp8 >> 5) & 1) {
1877 int off = (ypos >> 1) *
frame->linesize[2] + (xpos >> 1);
1883 subset = is_intra ? 1 : 3;
1884 num_clusters =
size >> 4;
1885 cl_cbp =
get_bits(gb, num_clusters * num_clusters);
1886 for (
int y = 0; y < num_clusters; y++) {
1887 for (
int x = 0; x < num_clusters; x++) {
1888 if (!((cl_cbp >> (y*num_clusters + x)) & 1))
1890 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 0] = 1;
1891 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 1] = 1;
1892 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 8] = 1;
1893 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 9] = 1;
1896 decode_cu_16x16(gb, is_intra, qp, sel_qp, y_coeffs, u_coeffs, v_coeffs, super_cbp);
1897 if (super_cbp & 0xFFFF) {
1898 int off = (ypos + y * 16) *
frame->linesize[0] + xpos + x * 16;
1901 if ((super_cbp >> 16) & 0xF) {
1902 int off = ((ypos >> 1) + y * 8) *
frame->linesize[1] + (xpos >> 1) + x * 8;
1905 if ((super_cbp >> 20) & 0xF) {
1906 int off = ((ypos >> 1) + y * 8) *
frame->linesize[2] + (xpos >> 1) + x * 8;
1920 return (ypos >> 2) *
s->dblk_stride + (xpos >> 2);
1926 int dsize =
size >> 2;
1927 int dval = (q << 2) + strength;
1929 for (
int x = 0; x < dsize; x++) {
1930 s->top_str[
pos + x] = dval;
1931 s->top_str[
pos + (dsize - 1)*
s->dblk_stride + x] = dval;
1934 for (
int y = 0; y < dsize; y++) {
1935 s->left_str[
pos + y*
s->dblk_stride] = dval;
1936 s->left_str[
pos + y*
s->dblk_stride + dsize - 1] = dval;
1942 return s->top_str[
pos] & 3;
1947 return s->left_str[
pos] & 3;
1952 s->top_str[
pos] |= strength;
1957 s->left_str[
pos] |= strength;
1962 int blk_pos = (ypos >> 2) *
s->blk_stride + (xpos >> 2);
1965 for (
int i = 0;
i <
size;
i++)
1969 for (
int i = 0;
i <
size;
i++)
1974 #define STRENGTH(el, lim) (FFABS(el) < (lim) ? 3 : 1)
1975 #define CLIP_SYMM(a, b) av_clip(a, -(b), b)
1979 int16_t diff_q1q0[4];
1980 int16_t diff_p1p0[4];
1981 int str_p, str_q, msum, maxprod, weak;
1983 for (
int i = 0;
i < 4;
i++) {
1988 str_p =
STRENGTH(diff_q1q0[0] + diff_q1q0[1] + diff_q1q0[2] + diff_q1q0[3], lim2);
1989 str_q =
STRENGTH(diff_p1p0[0] + diff_p1p0[1] + diff_p1p0[2] + diff_p1p0[3], lim2);
1991 if (str_p + str_q <= 2)
1994 msum = (mode1 + mode2 + str_q + str_p) >> 1;
1995 if (str_q == 1 || str_p == 1) {
2003 for (
int y = 0; y < 4; y++) {
2006 if (diff_p0q0 &&
result <= maxprod) {
2013 int diff_strg = (
dst[-2*
step] -
dst[
step] + 4 * diff_p0q0 + 4) >> 3;
2018 if (str_p != 1 &&
FFABS(diff_q1q2) <= (lim2 >> 2)) {
2019 int diff = (diff_q1q0[y] + diff_q1q2 -
delta) >> 1;
2023 if (str_q != 1 &&
FFABS(diff_p1p2) <= (lim2 >> 2)) {
2024 int diff = (diff_p1p0[y] + diff_p1p2 +
delta) >> 1;
2037 int str_q =
STRENGTH(diff_q, lim2);
2038 int str_p =
STRENGTH(diff_p, lim2);
2039 int msum, maxprod, weak;
2041 if (str_p + str_q <= 2)
2044 msum = (mode1 + mode2 + str_q + str_p) >> 1;
2045 if (str_q == 1 || str_p == 1) {
2053 for (
int y = 0; y < 2; y++) {
2056 if (diff_pq &&
result <= maxprod) {
2061 int diff_strg = (
dst[-2*
step] -
dst[
step] + 4 * diff_pq + 4) >> 3;
2073 int qp_l = dblk_l >> 2;
2074 int str_l = dblk_l & 3;
2075 int qp_r = dblk_r >> 2;
2076 int str_r = dblk_r & 3;
2079 int mode_l = str_l ? dl_l[str_l - 1] : 0;
2080 int mode_r = str_r ? dl_r[str_r - 1] : 0;
2082 int lim2 = dl_r[3] * 4;
2085 if ((str_l | str_r) >= 2 && deblock_chroma)
2086 for (
int plane = 1; plane < 3; plane++)
2092 int qp_t = dblk_t >> 2;
2093 int str_t = dblk_t & 3;
2094 int qp_d = dblk_d >> 2;
2095 int str_d = dblk_d & 3;
2098 int mode_t = str_t ? dl_t[str_t - 1] : 0;
2099 int mode_d = str_d ? dl_d[str_d - 1] : 0;
2101 int lim2 = dl_d[3] * 4;
2104 if ((str_t | str_d) >= 2 && deblock_chroma)
2105 for (
int plane = 1; plane < 3; plane++)
2113 int str_l =
s->left_str[dblkpos -
s->dblk_stride - 1];
2114 int str_r =
s->left_str[dblkpos -
s->dblk_stride];
2115 if ((str_l | str_r) & 3)
2119 int str_l =
s->left_str[dblkpos - 1];
2120 int str_r =
s->left_str[dblkpos];
2121 if ((str_l | str_r) & 3)
2124 if (ypos + 8 >=
s->aheight) {
2125 int str_l =
s->left_str[dblkpos +
s->dblk_stride - 1];
2126 int str_r =
s->left_str[dblkpos +
s->dblk_stride];
2127 if ((str_l | str_r) & 3)
2133 int str_t =
s->top_str[dblkpos -
s->dblk_stride - 1];
2134 int str_d =
s->top_str[dblkpos - 1];
2135 if ((str_t | str_d) & 3)
2139 int str_t =
s->top_str[dblkpos -
s->dblk_stride];
2140 int str_d =
s->top_str[dblkpos];
2141 if ((str_t | str_d) & 3)
2144 if (xpos + 8 >=
s->awidth) {
2145 int str_t =
s->top_str[dblkpos -
s->dblk_stride + 1];
2146 int str_d =
s->top_str[dblkpos + 1];
2147 if ((str_t | str_d) & 3)
2155 for (
int x = 0; x < size >> 3; x++)
2158 for (
int y = 1; y < size >> 3; y++)
2164 int pu_pos, tsize, ntiles;
2167 if (xpos >=
s->awidth || ypos >=
s->aheight)
2171 int hsize = 1 << (log_size - 1);
2180 pu_pos = (ypos >> 3) *
s->pu_stride + (xpos >> 3);
2181 cu_type =
s->pu_info[pu_pos].cu_type;
2183 case 3: tsize = 3;
break;
2184 case 4: tsize = cu_type &&
s->pu_info[pu_pos].pu_type ? 3 : 4;
break;
2186 case 6: tsize = 4;
break;
2188 ntiles = 1 << (log_size - tsize);
2190 for (
int ty = 0; ty < ntiles; ty++)
2191 for (
int tx = 0; tx < ntiles; tx++) {
2192 int x = xpos + (tx << tsize);
2193 int y = ypos + (ty << tsize);
2194 int cu_pos = ((y & 63) >> 3) * 8 + ((x & 63) >> 3);
2213 switch (qp_off_type) {
2218 return val != 2 ?
val : -1;
2226 return -((
val & 1) + 1);
2234 case 1:
return qp <= 25 ? qp + 5 : qp;
2251 int qp, sel_qp,
ret;
2263 for (
int cu_x = 0; cu_x <
s->cu_width; cu_x++) {
2302 if (avpkt->
size == 0) {
2310 if (avpkt->
size < 9)
2313 header_size = avpkt->
data[0] * 8 + 9;
2314 if (avpkt->
size < header_size)
2337 s->last_frame[
CUR_PIC]->pict_type =
s->pict_type;
2344 if (!
s->last_frame[
CUR_PIC]->data[0])
2353 for (
int i = 0;
i <
s->cu_height;
i++) {
2354 if (ofs >= avpkt->
size - header_size)
2356 s->slice[
i].data = avpkt->
data + header_size + ofs;
2357 s->slice[
i].data_size =
FFMIN(
s->slice[
i].size, avpkt->
size - header_size - ofs);
2358 if (
s->slice[
i].size > INT32_MAX - ofs)
2360 ofs +=
s->slice[
i].size;
2372 else if (
s->last_frame[
LAST_PIC]->data[0])
2386 s->ref_pts[0] =
s->ref_pts[1];
2387 s->ref_pts[1] = avpkt->
pts;
2389 s->ref_ts[0] =
s->ref_ts[1];
2390 s->ref_ts[1] =
s->ts;
2392 if (
s->ref_pts[1] >
s->ref_pts[0] &&
s->ref_ts[1] >
s->ref_ts[0])
2393 s->ts_scale = (
s->ref_pts[1] -
s->ref_pts[0]) / (
s->ref_ts[1] -
s->ref_ts[0]);
2395 frame->pts =
s->ref_pts[0] + (
s->ts -
s->ref_ts[0]) *
s->ts_scale;
2405 for (
int i = 0;
i < 3;
i++)
2413 for (
int i = 0;
i < 3;
i++)
2422 for (
int i = 0;
i <
s->nb_progress;
i++)
static void fill_mv_skip_cand(RV60Context *s, const CUContext *cu, unique_list_mvinfo *skip_cand, int size)
static void filter_luma_edge(uint8_t *dst, int step, int stride, int mode1, int mode2, int lim1, int lim2)
static const uint8_t skip_mv_ref[4]
#define AV_LOG_WARNING
Something somehow does not look correct.
static void decode_2x2_dc(GetBitContext *gb, const CoeffVLCs *vlcs, int16_t *coeffs, int stride, int block2, int dsc, int q_dc, int q_ac)
void ff_thread_progress_report(ThreadProgress *pro, int n)
This function is a no-op in no-op mode; otherwise it notifies other threads that a certain level of p...
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int pu_is_intra(const PUInfo *pu)
ThreadProgress is an API to easily notify other threads about progress of any kind as long as it can ...
static int deblock_get_top_strength(const RV60Context *s, int pos)
static void deblock(const RV60Context *s, AVFrame *frame, int xpos, int ypos, int size, int dpos)
static int pred_angle(const IntraPredContext *p, uint8_t *dst, int stride, int size, int imode, int filter)
void ff_rv60_idct8x8_add(const int16_t *block, uint8_t *dst, int dst_stride)
static void read_mv(GetBitContext *gb, MV *mv)
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
static void decode_cu_16x16(GetBitContext *gb, int is_intra, int qp, int sel_qp, int16_t *y_coeffs, int16_t *u_coeffs, int16_t *v_coeffs, int ccbp)
static const int8_t mv[256][2]
#define FILTER_BLOCK(dst, dst_stride, src, src_stride, src_y_ofs, w, h, cond, step)
static int get_bits_count(const GetBitContext *s)
static void deblock_edge_ver(AVFrame *frame, int xpos, int ypos, int dblk_l, int dblk_r, int deblock_chroma)
static const VLCElem * cbp8_vlc[7][4]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
static av_cold void rv60_init_static_data(void)
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
static int mvinfo_matches_forward(const MVInfo *a, const MVInfo *b)
static void mc(RV60Context *s, uint8_t *frame_data[3], int frame_linesize[3], const AVFrame *ref, int x, int y, int w, int h, MV mv, int avg)
static void filter_weak(uint8_t *dst, const uint8_t *src, int size)
static av_cold void rv60_flush(AVCodecContext *avctx)
const FFCodec ff_rv60_decoder
void(* filter)(uint8_t *src, int stride, int qscale)
static const uint8_t rv60_cbp8_lens[7][4][64]
static int update_dimensions_clear_info(RV60Context *s, int width, int height)
static void decode_4x4_block(GetBitContext *gb, const CoeffVLCs *vlcs, int is_luma, int16_t *coeffs, int stride, int q_ac)
static void decode_cu_4x4in16x16(GetBitContext *gb, int is_intra, int qp, int sel_qp, int16_t *y_coeffs, int16_t *u_coeffs, int16_t *v_coeffs, int cbp)
static int ipm_compar(const void *a, const void *b)
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int deblock_get_pos(RV60Context *s, int xpos, int ypos)
static int deblock_get_left_strength(const RV60Context *s, int pos)
static void populate_ipred(const RV60Context *s, CUContext *cu, const uint8_t *src, int stride, int xoff, int yoff, int size, int is_luma)
uint8_t avg_buffer[64 *64+32 *32 *2]
static void skip_bits(GetBitContext *s, int n)
static av_cold void close(AVCodecParserContext *s)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static int has_left_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
AVCodec p
The public AVCodec.
enum AVDiscard skip_frame
Skip decoding for selected frames.
static void deblock_set_top_strength(RV60Context *s, int pos, int strength)
static int get_skip_mv_index(enum MVRefEnum mvref)
static void deblock_edge_hor(AVFrame *frame, int xpos, int ypos, int dblk_t, int dblk_d, int deblock_chroma)
const h264_weight_func weight
static double val(void *priv, double ch)
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
static void get_mv_dimensions(Dimensions *dim, enum PUType pu_type, int part_no, int size)
static void pred_plane(const IntraPredContext *p, uint8_t *dst, int stride, int size)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
static void derive_deblock_strength(RV60Context *s, int xpos, int ypos, int size)
static int ff_thread_once(char *control, void(*routine)(void))
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static int quant(int v, int q)
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
For static VLCs, the number of bits can often be hardcoded at each get_vlc2() callsite.
static int decode_slice(AVCodecContext *avctx, void *tdata, int cu_y, int threadnr)
#define FF_CODEC_DECODE_CB(func)
static const uint8_t rv60_deblock_limits[32][4]
void * av_realloc_array(void *ptr, size_t nmemb, size_t size)
static const uint8_t rv60_edge2[4]
uint8_t cu_split[1+4+16+64]
#define MK_UNIQUELIST(name, type, max_size)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static const uint8_t rv60_cbp16_lens[7][3][4][64]
static void predict_mv(const RV60Context *s, MVInfo *dst, int mv_x, int mv_y, int mv_w, const MVInfo *src)
static int mv_is_forward(enum MVRefEnum mvref)
static const uint8_t rv60_ipred_angle[9]
static int mv_is_ref0(enum MVRefEnum mvref)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
static void mv_pred(MV *ret, MV a, MV b, MV c)
static void deblock8x8(const RV60Context *s, AVFrame *frame, int xpos, int ypos, int dblkpos)
#define CODEC_LONG_NAME(str)
static int read_frame_header(RV60Context *s, GetBitContext *gb, int *width, int *height)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
@ AVDISCARD_ALL
discard all
static void decode_4x4_block_dc(GetBitContext *gb, const CoeffVLCs *vlcs, int is_luma, int16_t *coeffs, int stride, int q_dc, int q_ac)
static void ipred_init(IntraPredContext *i)
void ff_thread_progress_await(const ThreadProgress *pro_c, int n)
This function is a no-op in no-op mode; otherwise it waits until other threads have reached a certain...
static int mvinfo_is_deblock_cand(const MVInfo *a, const MVInfo *b)
and forward the result(frame or status change) to the corresponding input. If nothing is possible
static int decode_cu_r(RV60Context *s, AVFrame *frame, ThreadContext *thread, GetBitContext *gb, int xpos, int ypos, int log_size, int qp, int sel_qp)
static const uint8_t rv60_chroma_quant_ac[32]
static int has_ver_split(enum PUType pu_type)
static VLCElem table_data[129148]
static unsigned int get_bits1(GetBitContext *s)
@ AV_PICTURE_TYPE_I
Intra.
static int read_slice_sizes(RV60Context *s, GetBitContext *gb)
static int has_hor_split(enum PUType pu_type)
static void decode_2x2(GetBitContext *gb, const CoeffVLCs *vlcs, int16_t *coeffs, int stride, int block2, int dsc, int q_ac)
static int has_top_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
static const uint8_t rv60_dsc_to_lx[][4]
static const VLCElem * cbp16_vlc[7][4][4]
static const VLCElem * gen_vlc(const uint8_t *bits, int size, VLCInitState *state)
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
static const CoeffLens rv60_intra_lens[5]
static void luma_mc(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h, int cx, int cy)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static void pred_dc(const IntraPredContext *p, uint8_t *dst, int stride, int size, int filter)
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
static void read_mv_info(RV60Context *s, GetBitContext *gb, MVInfo *mvinfo, int size, enum PUType pu_type)
@ AVDISCARD_NONKEY
discard all frames except keyframes
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
int(* init)(AVBSFContext *ctx)
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static const uint8_t rv60_avail_mask[64]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
static const uint16_t rv60_ipred_inv_angle[9]
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
static void filter_bilin32(uint8_t *dst, int v0, int v1, int size)
static void build_coeff_vlc(const CoeffLens *lens, CoeffVLCs *vlc, int count, VLCInitState *state)
static int shift(int a, int b)
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
static int rv60_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
static int pu_type_num_parts(enum PUType pu_type)
static void add_if_valid(unique_list_mvinfo *skip_cand, const MVInfo *mvi)
static int get_interleaved_se_golomb(GetBitContext *gb)
static const CoeffLens rv60_inter_lens[7]
static void chroma_mc(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h, int x, int y)
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
static void filter_chroma_edge(uint8_t *dst, int step, int stride, int mode1, int mode2, int lim1, int lim2)
static av_cold int rv60_decode_end(AVCodecContext *avctx)
@ AV_PICTURE_TYPE_NONE
Undefined.
FrameData * frame_data(AVFrame *frame)
Get our axiliary frame data attached to the frame, allocating it if needed.
static av_always_inline int diff(const struct color_info *a, const struct color_info *b, const int trans_thresh)
static char * split(char *message, char delim)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
int av_reallocp_array(void *ptr, size_t nmemb, size_t size)
Allocate, reallocate an array through a pointer to a pointer.
static CoeffVLCs intra_coeff_vlc[5]
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static void pred_hor_angle(uint8_t *dst, int stride, int size, int weight, const uint8_t *src)
struct ThreadProgress * progress
static void skip_bits1(GetBitContext *s)
static void deblock_cu_r(RV60Context *s, AVFrame *frame, ThreadContext *thread, int xpos, int ypos, int log_size, int qp)
static int calc_sel_qp(int osvquant, int qp)
static int read_intra_mode(GetBitContext *gb, int *param)
#define AV_LOG_INFO
Standard information.
static int decode_super_cbp(GetBitContext *gb, const VLCElem *vlc[4])
#define STRENGTH(el, lim)
static const uint8_t rv60_candidate_intra_angles[6]
static int decode_cbp8(GetBitContext *gb, int subset, int qp)
#define i(width, name, range_min, range_max)
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
static int has_left_down_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
av_cold int ff_thread_progress_init(ThreadProgress *pro, int init_mode)
Initialize a ThreadProgress.
void av_frame_move_ref(AVFrame *dst, AVFrame *src)
Move everything contained in src to dst and reset src.
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
static int has_top_right_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
static void avg(AVFrame *frame, uint8_t *prev_frame_data[3], int prev_frame_linesize[3], int x, int y, int w, int h)
const char * name
Name of the codec implementation.
void ff_rv60_idct4x4_add(const int16_t *block, uint8_t *dst, int dst_stride)
static void pred_ver_angle(uint8_t *dst, int stride, int size, int weight, const uint8_t *src)
static av_cold int rv60_decode_init(AVCodecContext *avctx)
static int decode_coeff(GetBitContext *gb, const CoeffVLCs *vlcs, int inval, int val)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
static int mv_is_backward(enum MVRefEnum mvref)
static int reconstruct_intra(const RV60Context *s, const CUContext *cu, int size, int sub)
static int mvinfo_matches_backward(const MVInfo *a, const MVInfo *b)
#define FFSWAP(type, a, b)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static int progress_init(RV60Context *s, unsigned count)
static const uint8_t * align_get_bits(GetBitContext *s)
static CoeffVLCs inter_coeff_vlc[7]
av_cold void ff_thread_progress_destroy(ThreadProgress *pro)
Destroy a ThreadProgress.
static int decode_cbp16(GetBitContext *gb, int subset, int qp)
main external API structure.
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
static void get_next_mv(const RV60Context *s, const Dimensions *dim, enum PUType pu_type, int part_no, int *mv_pos, int *mv_x, int *mv_y)
static int ref[MAX_W *MAX_W]
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static void ff_thread_progress_reset(ThreadProgress *pro)
Reset the ThreadProgress.progress counter; must only be called if the ThreadProgress is not in use in...
IDirect3DDxgiInterfaceAccess _COM_Outptr_ void ** p
static void deblock_set_strength(RV60Context *s, int xpos, int ypos, int size, int q, int strength)
@ AV_PICTURE_TYPE_P
Predicted.
static const VLCElem * ff_vlc_init_tables(VLCInitState *state, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, int flags)
static void deblock_set_left_strength(RV60Context *s, int pos, int strength)
static const uint8_t rv60_chroma_quant_dc[32]
static int read_qp_offset(GetBitContext *gb, int qp_off_type)
static int read_code012(GetBitContext *gb)
static int check_pos(int x, int y, int cw, int ch, int w, int h, int dx, int dy, int e0, int e1, int e2, int e3)
static const uint8_t rv60_qp_to_idx[64]
#define VLC_INIT_STATE(_table)
static int get_c4x4_set(int qp, int is_intra)
This structure stores compressed data.
static void avg_plane(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h)
void ff_rv60_idct16x16_add(const int16_t *block, uint8_t *dst, int dst_stride)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static void decode_cu_8x8(GetBitContext *gb, int is_intra, int qp, int sel_qp, int16_t *y_coeffs, int16_t *u_coeffs, int16_t *v_coeffs, int ccbp, int mode4x4)
@ AVDISCARD_NONREF
discard all non reference
static const uint8_t rv60_edge1[4]
static void reconstruct(RV60Context *s, const CUContext *cu, int size)
static const int8_t frame_types[4]
static const uint16_t rv60_quants_b[32]