Go to the documentation of this file.
97 #define MAX_VLC_SIZE 864
103 int counts[17] = {0};
110 codes[0] = counts[0] = 0;
111 for (
int i = 0;
i < 17;
i++)
112 codes[
i+1] = (codes[
i] + counts[
i]) << 1;
124 for (
int i = 0;
i < count;
i++) {
125 for (
int j = 0; j < 2; j++) {
138 for (
int i = 0;
i < 7;
i++)
139 for (
int j = 0; j < 4; j++)
142 for (
int i = 0;
i < 7;
i++)
143 for (
int j = 0; j < 3; j++)
144 for (
int k = 0; k < 4; k++)
160 uint8_t cu_split[1+4+16+64];
162 uint8_t coded_blk[64];
164 uint8_t avg_buffer[64*64 + 32*32*2];
165 uint8_t * avg_data[3];
233 if (
s->nb_progress < count) {
238 memset(
s->progress +
s->nb_progress, 0, (count -
s->nb_progress) *
sizeof(*
s->progress));
239 for (
int i =
s->nb_progress;
i < count;
i++) {
243 s->nb_progress =
i + 1;
247 for (
int i = 0;
i < count;
i++)
264 for (
int i = 0;
i < 3;
i++) {
266 if (!
s->last_frame[
i])
279 if (
width !=
s->avctx->width ||
height !=
s->avctx->height) {
283 for (
int i = 0;
i < 3;
i++)
289 if (
s->avctx->width <= 64 ||
s->avctx->height <= 64)
290 av_log(
s->avctx,
AV_LOG_WARNING,
"unable to faithfully reproduce emulated edges; expect visual artefacts\n");
296 s->cu_width = (
width + 63) >> 6;
297 s->cu_height = (
height + 63) >> 6;
299 s->pu_stride =
s->cu_width << 3;
300 s->blk_stride =
s->cu_width << 4;
311 for (
int j = 0; j <
s->cu_height << 4; j++)
312 for (
int i = 0;
i <
s->cu_width << 4;
i++)
318 s->dblk_stride =
s->awidth >> 2;
320 size =
s->dblk_stride * (
s->aheight >> 2);
328 memset(
s->top_str, 0,
size);
329 memset(
s->left_str, 0,
size);
381 for (
int i = 0;
i < count;
i++)
382 for (
int j = 0; j < 2 <<
i; j++)
395 for (
int i = 0;
i <
s->cu_height;
i++)
403 for (
int i = 1;
i <
s->cu_height;
i++) {
405 if (
s->slice[
i].sign)
411 s->slice[
i].size = last_size;
431 return ypos + dy && xpos + dx +
size <=
s->awidth;
436 return xpos + dx && ypos + dy +
size <=
s->aheight;
485 memset(
i->t, 0x80,
sizeof(
i->t));
486 memset(
i->l, 0x80,
sizeof(
i->l));
487 i->has_t =
i->has_tr =
i->has_l =
i->has_ld = 0;
499 if (cu->
ypos + yoff > 0) {
511 if (cu->
xpos + xoff > 0)
515 if (cu->
xpos + xoff > 0) {
518 for (
int y = 0; y <
size; y++)
524 for (
int y =
size; y <
size * 2; y++)
529 if (cu->
ypos + yoff > 0)
536 int lastl = p->
l[
size + 1];
537 int lastt = p->
t[
size + 1];
538 int tmp1[64], tmp2[64];
539 int top_ref[64], left_ref[64];
542 for (
int i = 0;
i <
size;
i++) {
543 tmp1[
i] = lastl - p->
t[
i + 1];
544 tmp2[
i] = lastt - p->
l[
i + 1];
548 for (
int i = 0;
i <
size;
i++) {
549 top_ref[
i] = p->
t[
i + 1] << (
shift - 1);
550 left_ref[
i] = p->
l[
i + 1] << (
shift - 1);
553 for (
int y = 0; y <
size; y++) {
555 int sum = left_ref[y] +
size;
556 for (
int x = 0; x <
size; x++) {
557 int v = tmp1[x] + top_ref[x];
574 for (
int x = 0; x <
size; x++)
577 for (
int y = 0; y <
size; y++)
585 for (
int y = 0; y <
size; y++)
589 dst[0] = (p->
t[1] + p->
l[1] + 2 *
dst[0] + 2) >> 2;
590 for (
int x = 1; x <
size; x++)
591 dst[x] = (p->
t[x + 1] + 3 *
dst[x] + 2) >> 2;
592 for (
int y = 1; y <
size; y++)
600 for (
int i = 1;
i <
size - 1;
i++)
608 int sum = (v0 << 5) + (1 << (5 - 1));
609 for (
int i = 0;
i <
size;
i++) {
618 for (
int x = 0; x <
size; x++) {
621 off = (sum >> 5) + 32;
624 for (
int y = 0; y <
size; y++)
627 for (
int y = 0; y <
size; y++) {
628 int a =
src[off + y];
629 int b =
src[off + y + 1];
630 dst[y*
stride + x] = ((32 - frac) *
a + frac *
b + 16) >> 5;
639 for (
int y = 0; y <
size; y++) {
642 off = (sum >> 5) + 32;
647 for (
int x = 0; x <
size; x++) {
648 int a =
src[off + x];
649 int b =
src[off + x + 1];
650 dst[y*
stride + x] = ((32 - frac) *
a + frac *
b + 16) >> 5;
658 uint8_t filtered1[96], filtered2[96];
662 }
else if (imode == 1) {
664 }
else if (imode <= 9) {
666 int add_size = (
size * ang_weight + 31) >> 5;
674 }
else if (imode == 10) {
679 for (
int y = 0; y <
size; y++)
680 for (
int x = 0; x <
size; x++)
684 for (
int x = 0; x <
size; x++)
687 }
else if (imode <= 17) {
690 int add_size = (
size * ang_weight + 31) >> 5;
692 memcpy(filtered1 + 32 - 1, p->
l,
size + 1);
693 memcpy(filtered2 + 32 - 1, p->
t,
size + 1);
695 filtered1[32 - 1] = p->
l[0];
697 filtered2[32 - 1] = p->
t[0];
702 for (
int i = 1;
i < add_size;
i++) {
704 filtered1[32 - 1 -
i] = filtered2[32 - 1 + (sum >> 8)];
708 }
else if (imode <= 25) {
711 int add_size = (
size * ang_weight + 31) >> 5;
713 memcpy(filtered1 + 32 - 1, p->
t,
size + 1);
714 memcpy(filtered2 + 32 - 1, p->
l,
size + 1);
716 filtered1[32 - 1] = p->
t[0];
718 filtered2[32 - 1] = p->
l[0];
723 for (
int i = 1;
i < add_size;
i++) {
725 filtered1[32 - 1 -
i] = filtered2[32 - 1 + (sum >> 8)];
729 }
else if (imode == 26) {
738 for (
int y = 0; y <
size; y++)
741 }
else if (imode <= 34) {
743 int add_size = (
size * ang_weight + 31) >> 5;
766 #define MK_UNIQUELIST(name, type, max_size) \
768 type list[max_size]; \
770 } unique_list_##name; \
772 static void unique_list_##name##_init(unique_list_##name * s) \
774 memset(s->list, 0, sizeof(s->list)); \
778 static void unique_list_##name##_add(unique_list_##name * s, type cand) \
780 if (s->size == max_size) \
783 for (int i = 0; i < s->size; i++) { \
784 if (!memcmp(&s->list[i], &cand, sizeof(type))) { \
788 s->list[s->size++] = cand; \
796 int blk_pos, tl_x, tl_y;
797 unique_list_intramode ipm_cand;
805 unique_list_intramode_init(&ipm_cand);
808 const PUInfo * pu = &
s->pu_info[cu->pu_pos -
s->pu_stride];
810 unique_list_intramode_add(&ipm_cand,
s->blk_info[cu->blk_pos -
s->blk_stride + (sub & 1)].imode);
813 blk_pos = cu->blk_pos + (sub >> 1) *
s->blk_stride + (sub & 1);
816 const PUInfo * pu = &
s->pu_info[cu->pu_pos - 1];
818 unique_list_intramode_add(&ipm_cand,
s->blk_info[blk_pos - 1 - (sub & 1)].imode);
821 tl_x = !(sub & 2) ? (cu->xpos + (sub & 1) * 4) : cu->xpos;
822 tl_y = cu->ypos + (sub & 2) * 4;
823 if (tl_x > 0 && tl_y > 0) {
826 case 0: pu = &
s->pu_info[cu->pu_pos -
s->pu_stride - 1];
break;
827 case 1: pu = &
s->pu_info[cu->pu_pos -
s->pu_stride];
break;
828 default: pu = &
s->pu_info[cu->pu_pos - 1];
832 unique_list_intramode_add(&ipm_cand,
s->blk_info[blk_pos -
s->blk_stride - 1].imode);
834 unique_list_intramode_add(&ipm_cand,
s->blk_info[blk_pos -
s->blk_stride - 2].imode);
842 return ipm_cand.list[cu->imode_param[sub]];
845 enum IntraMode imode = cu->imode_param[sub];
846 qsort(ipm_cand.list, 3,
sizeof(ipm_cand.list[0]),
ipm_compar);
847 for (
int i = 0;
i < 3;
i++)
848 if (imode >= ipm_cand.list[
i])
870 unique_list_mvinfo_add(skip_cand, *mvi);
875 int mv_size =
size >> 2;
881 if (cu->
ypos && cu->
xpos + size < s->awidth)
883 if (cu->
xpos && cu->
ypos + size < s->aheight)
892 for (
int i = skip_cand->size;
i < 4;
i++)
902 int mv_size =
size >> 2;
905 dim->w =
dim->h = mv_size;
909 dim->h = mv_size >> 1;
912 dim->w = mv_size >> 1;
916 dim->w =
dim->h = mv_size >> 1;
920 dim->h = !part_no ? (mv_size >> 2) : ((3 * mv_size) >> 2);
924 dim->h = !part_no ? ((3 * mv_size) >> 2) : (mv_size >> 2);
927 dim->w = !part_no ? (mv_size >> 2) : ((3 * mv_size) >> 2);
931 dim->w = !part_no ? ((3 * mv_size) >> 2) : (mv_size >> 2);
963 *mv_pos +=
dim->h*
s->blk_stride -
dim->w;
968 *mv_pos +=
dim->h *
s->blk_stride;
1005 if (
a->mvref !=
b->mvref)
1010 int dx =
a->f_mv.x -
b->f_mv.x;
1011 int dy =
a->f_mv.y -
b->f_mv.y;
1015 int dx =
a->b_mv.x -
b->b_mv.x;
1016 int dy =
a->b_mv.y -
b->b_mv.y;
1029 ret->x = a.x < c.x ? c.x : a.x; \
1032 ret->x = a.x < c.x ? a.x : c.x; \
1042 int mv_pos = mv_y *
s->blk_stride + mv_x;
1051 const MVInfo *
mv = &
s->blk_info[mv_pos - 1].mv;
1053 cand[cand_size++] =
mv->f_mv;
1056 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride].mv;
1058 cand[cand_size++] =
mv->f_mv;
1061 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride + mv_w].mv;
1063 cand[cand_size++] =
mv->f_mv;
1066 switch (cand_size) {
1072 f_mv.
x = (cand[0].
x + cand[1].
x) >> 1;
1073 f_mv.
y = (cand[0].
y + cand[1].
y) >> 1;
1076 mv_pred(&f_mv, cand[0], cand[1], cand[2]);
1086 dst->f_mv.x =
src->f_mv.x + f_mv.
x;
1087 dst->f_mv.y =
src->f_mv.y + f_mv.
y;
1093 const MVInfo *
mv = &
s->blk_info[mv_pos - 1].mv;
1095 cand[cand_size++] =
mv->b_mv;
1098 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride].mv;
1100 cand[cand_size++] =
mv->b_mv;
1103 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride + mv_w].mv;
1105 cand[cand_size++] =
mv->b_mv;
1108 switch (cand_size) {
1114 b_mv.
x = (cand[0].
x + cand[1].
x) >> 1;
1115 b_mv.
y = (cand[0].
y + cand[1].
y) >> 1;
1118 mv_pred(&b_mv, cand[0], cand[1], cand[2]);
1128 dst->b_mv.x =
src->b_mv.x + b_mv.
x;
1129 dst->b_mv.y =
src->b_mv.y + b_mv.
y;
1134 int pu_size =
size >> 3;
1136 int imode, mv_x, mv_y, mv_pos, count, mv_size;
1137 unique_list_mvinfo skip_cand;
1146 for (
int y = 0; y < 2; y++)
1147 for (
int x = 0; x < 2; x++)
1148 s->blk_info[cu->
blk_pos + y*
s->blk_stride + x].imode =
1156 for (
int y = 0; y < size >> 2; y++)
1157 for (
int x = 0; x < size >> 2; x++)
1158 s->blk_info[cu->
blk_pos + y*
s->blk_stride + x].imode = imode;
1161 mv_x = cu->
xpos >> 2;
1162 mv_y = cu->
ypos >> 2;
1165 for (
int part_no = 0; part_no < count; part_no++) {
1169 for (
int y = 0; y <
dim.h; y++)
1170 for (
int x = 0; x <
dim.w; x++)
1171 s->blk_info[mv_pos + y*
s->blk_stride + x].mv =
mv;
1176 unique_list_mvinfo_init(&skip_cand);
1179 mv_size =
size >> 2;
1180 for (
int y = 0; y < mv_size; y++)
1181 for (
int x = 0; x < mv_size; x++)
1182 s->blk_info[cu->
blk_pos + y*
s->blk_stride + x].mv =
mv;
1185 for (
int y = 0; y < pu_size; y++)
1186 for (
int x = 0; x < pu_size; x++)
1187 s->pu_info[cu->
pu_pos + y*
s->pu_stride + x] = pui;
1224 #define FILTER1(src, src_stride, src_y_ofs, step) \
1225 ( (src)[(y + src_y_ofs)*(src_stride) + x - 2*step] \
1226 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x - 1*step] \
1227 +52 * (src)[(y + src_y_ofs)*(src_stride) + x ] \
1228 +20 * (src)[(y + src_y_ofs)*(src_stride) + x + 1*step] \
1229 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x + 2*step] \
1230 + (src)[(y + src_y_ofs)*(src_stride) + x + 3*step] + 32) >> 6
1232 #define FILTER2(src, src_stride, src_y_ofs, step) \
1233 ( (src)[(y + src_y_ofs)*(src_stride) + x - 2*step] \
1234 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x - 1*step] \
1235 +20 * (src)[(y + src_y_ofs)*(src_stride) + x ] \
1236 +20 * (src)[(y + src_y_ofs)*(src_stride) + x + 1*step] \
1237 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x + 2*step] \
1238 + (src)[(y + src_y_ofs)*(src_stride) + x + 3*step] + 16) >> 5
1240 #define FILTER3(src, src_stride, src_y_ofs, step) \
1241 ( (src)[(y + src_y_ofs)*(src_stride) + x - 2*step] \
1242 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x - 1*step] \
1243 +20 * (src)[(y + src_y_ofs)*(src_stride) + x ] \
1244 +52 * (src)[(y + src_y_ofs)*(src_stride) + x + 1*step] \
1245 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x + 2*step] \
1246 + (src)[(y + src_y_ofs)*(src_stride) + x + 3*step] + 32) >> 6
1248 #define FILTER_CASE(idx, dst, dst_stride, filter, w, h) \
1250 for (int y = 0; y < h; y++) \
1251 for (int x = 0; x < w; x++) \
1252 (dst)[y*dst_stride + x] = av_clip_uint8(filter); \
1255 #define FILTER_BLOCK(dst, dst_stride, src, src_stride, src_y_ofs, w, h, cond, step) \
1257 FILTER_CASE(1, dst, dst_stride, FILTER1(src, src_stride, src_y_ofs, step), w, h) \
1258 FILTER_CASE(2, dst, dst_stride, FILTER2(src, src_stride, src_y_ofs, step), w, h) \
1259 FILTER_CASE(3, dst, dst_stride, FILTER3(src, src_stride, src_y_ofs, step), w, h) \
1262 static void luma_mc(uint8_t *
dst,
int dst_stride,
const uint8_t *
src,
int src_stride,
int w,
int h,
int cx,
int cy)
1265 for (
int y = 0; y <
h; y++)
1266 memcpy(
dst + y*dst_stride,
src + y*src_stride,
w);
1271 }
else if (cx != 3 || cy != 3) {
1272 uint8_t
tmp[70 * 64];
1276 for (
int j = 0; j <
h; j++)
1277 for (
int i = 0;
i <
w;
i++)
1278 dst[j*dst_stride +
i] = (
1279 src[j*src_stride +
i] +
1280 src[j*src_stride +
i + 1] +
1281 src[(j + 1)*src_stride +
i] +
1282 src[(j + 1)*src_stride +
i + 1] + 2) >> 2;
1286 static void chroma_mc(uint8_t *
dst,
int dst_stride,
const uint8_t *
src,
int src_stride,
int w,
int h,
int x,
int y)
1289 for (
int j = 0; j <
h; j++)
1290 memcpy(
dst + j*dst_stride,
src + j*src_stride,
w);
1291 }
else if (x > 0 && y > 0) {
1294 if (x == 3 && y == 3)
1297 a = (4 - x) * (4 - y);
1301 for (
int j = 0; j <
h; j++)
1302 for (
int i = 0;
i <
w;
i++)
1303 dst[j*dst_stride +
i] =
1304 (
a *
src[j*src_stride +
i] +
1305 b *
src[j*src_stride +
i + 1] +
1306 c *
src[(j + 1)*src_stride +
i] +
1307 d *
src[(j + 1)*src_stride +
i + 1] + 8) >> 4;
1309 int a = (4 - x) * (4 - y);
1310 int e = x * (4 - y) + (4 - x) * y;
1311 int step = y > 0 ? src_stride : 1;
1312 for (
int j = 0; j <
h; j++)
1313 for (
int i = 0;
i <
w;
i++)
1314 dst[j*dst_stride +
i] =
1315 (
a *
src[j*src_stride +
i] +
1316 e *
src[j*src_stride +
i +
step] + 8) >> 4;
1320 static int check_pos(
int x,
int y,
int cw,
int ch,
int w,
int h,
int dx,
int dy,
int e0,
int e1,
int e2,
int e3)
1324 return x2 - e0 >= 0 && x2 + cw + e1 <=
w && y2 - e2 >= 0 && y2 + ch + e3 <=
h;
1330 int off = !
avg ? y * frame_linesize[0] + x : 0;
1332 int fh =
s->aheight;
1338 if (
check_pos(x, y,
w,
h, fw, fh, dx, dy,
rv60_edge1[cx],
rv60_edge2[cx],
rv60_edge1[cy],
rv60_edge2[cy])) {
1342 ref->data[0] + (y + dy) *
ref->linesize[0] + x + dx,
1347 int xoff = x + dx - 2;
1348 int yoff = y + dy - 2;
1349 s->vdsp.emulated_edge_mc(buf,
1350 ref->data[0] + yoff *
ref->linesize[0] + xoff,
1351 70,
ref->linesize[0],
1357 buf + 70 * 2 + 2, 70,
w,
h, cx, cy);
1361 int fw =
s->awidth >> 1;
1362 int fh =
s->aheight >> 1;
1372 for (
int plane = 1; plane < 3; plane++) {
1373 int off = !
avg ? (y >> 1) * frame_linesize[plane] + (x >> 1) : 0;
1374 if (
check_pos(x >> 1, y >> 1, cw, ch, fw, fh, dx, dy, 0, 1, 0, 1)) {
1377 frame_linesize[plane],
1378 ref->data[plane] + ((y >> 1) + dy) *
ref->linesize[plane] + (x >> 1) + dx,
1379 ref->linesize[plane],
1383 s->vdsp.emulated_edge_mc(buf,
1384 ref->data[plane] + ((y >> 1) + dy) *
ref->linesize[plane] + (x >> 1) + dx,
1385 40,
ref->linesize[plane],
1387 (x >> 1) + dx, (y >> 1) + dy,
1395 static void avg_plane(uint8_t *
dst,
int dst_stride,
const uint8_t *
src,
int src_stride,
int w,
int h)
1397 for (
int j = 0; j <
h; j++)
1398 for (
int i = 0;
i <
w;
i++)
1399 dst[j*dst_stride +
i] = (
dst[j*dst_stride +
i] +
src[j*src_stride +
i]) >> 1;
1402 static void avg(
AVFrame *
frame, uint8_t * prev_frame_data[3],
int prev_frame_linesize[3],
int x,
int y,
int w,
int h)
1404 for (
int plane = 0; plane < 3; plane++) {
1405 int shift = !plane ? 0 : 1;
1407 prev_frame_data[plane], prev_frame_linesize[plane],
1422 return (v * q + 8) >> 4;
1430 return inval &&
get_bits1(gb) ? -inval : inval;
1434 int esc_bits = esc_sym - 23;
1435 val += (1 << esc_bits) +
get_bits(gb, esc_bits) + 22;
1482 int sym0 =
get_vlc2(gb, vlcs->
l0[!is_luma], 9, 2);
1483 int grp0 = sym0 >> 3;
1489 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1493 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1497 int grp =
get_vlc2(gb, vlcs->
l3[!is_luma], 9, 2);
1504 int sym0 =
get_vlc2(gb, vlcs->
l0[!is_luma], 9, 2);
1505 int grp0 = (sym0 >> 3);
1511 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1515 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1519 int grp =
get_vlc2(gb, vlcs->
l3[!is_luma], 9, 2);
1532 memset(y_coeffs, 0,
sizeof(y_coeffs[0])*256);
1533 for (
int i = 0;
i < 16;
i++)
1537 memset(u_coeffs, 0,
sizeof(u_coeffs[0])*64);
1538 for (
int i = 0;
i < 4;
i++)
1539 if ((cbp >> (16 +
i)) & 1)
1542 memset(v_coeffs, 0,
sizeof(v_coeffs[0])*64);
1543 for (
int i = 0;
i < 4;
i++)
1544 if ((cbp >> (20 +
i)) & 1)
1554 static void decode_cu_8x8(
GetBitContext * gb,
int is_intra,
int qp,
int sel_qp, int16_t * y_coeffs, int16_t * u_coeffs, int16_t * v_coeffs,
int ccbp,
int mode4x4)
1562 memset(y_coeffs, 0,
sizeof(y_coeffs[0])*64);
1563 for (
int i = 0;
i < 4;
i++) {
1564 if ((ccbp >>
i) & 1) {
1570 offset = (
i & 1) * 4 + (
i & 2) * 2 * 8;
1577 if ((ccbp >> 4) & 1) {
1578 memset(u_coeffs, 0,
sizeof(u_coeffs[0])*16);
1582 if ((ccbp >> 5) & 1) {
1583 memset(v_coeffs, 0,
sizeof(u_coeffs[0])*16);
1596 memset(y_coeffs, 0,
sizeof(y_coeffs[0])*256);
1597 for (
int i = 0;
i < 16;
i++)
1598 if ((ccbp >>
i) & 1) {
1599 int off = (
i & 3) * 4 + (
i >> 2) * 4 * 16;
1603 memset(u_coeffs, 0,
sizeof(u_coeffs[0])*64);
1604 for (
int i = 0;
i < 4;
i++)
1605 if ((ccbp >> (16 +
i)) & 1) {
1606 int off = (
i & 1) * 4 + (
i & 2) * 2 * 8;
1613 memset(v_coeffs, 0,
sizeof(v_coeffs[0])*64);
1614 for (
int i = 0;
i < 4;
i++)
1615 if ((ccbp >> (20 +
i)) & 1) {
1616 int off = (
i & 1) * 4 + (
i & 2) * 2 * 8;
1626 int sym0 =
get_vlc2(gb, vlc[0], 9, 2);
1627 int sym1 =
get_vlc2(gb, vlc[1], 9, 2);
1628 int sym2 =
get_vlc2(gb, vlc[2], 9, 2);
1629 int sym3 =
get_vlc2(gb, vlc[3], 9, 2);
1631 + ((sym0 & 0x03) << 0)
1632 + ((sym0 & 0x0C) << 2)
1633 + ((sym0 & 0x10) << 12)
1634 + ((sym0 & 0x20) << 15)
1635 + ((sym1 & 0x03) << 2)
1636 + ((sym1 & 0x0C) << 4)
1637 + ((sym1 & 0x10) << 13)
1638 + ((sym1 & 0x20) << 16)
1639 + ((sym2 & 0x03) << 8)
1640 + ((sym2 & 0x0C) << 10)
1641 + ((sym2 & 0x10) << 14)
1642 + ((sym2 & 0x20) << 17)
1643 + ((sym3 & 0x03) << 10)
1644 + ((sym3 & 0x0C) << 12)
1645 + ((sym3 & 0x10) << 15)
1646 + ((sym3 & 0x20) << 18);
1657 int size = 1 << log_size;
1658 int split,
ret, ttype, count, is_intra, cu_pos, subset, cbp8, imode, split_i4x4, num_clusters, cl_cbp, super_cbp, mv_x, mv_y, mv_pos;
1659 int16_t y_coeffs[16*16], u_coeffs[8*8], v_coeffs[8*8];
1662 if (xpos >=
s->awidth || ypos >=
s->aheight)
1680 cu.
pu_pos = (xpos >> 3) + (ypos >> 3) *
s->pu_stride;
1681 cu.
blk_pos = (xpos >> 2) + (ypos >> 2) *
s->blk_stride;
1688 for (
int i = 0;
i < 4;
i++)
1690 else if (
size <= 32)
1698 for (
int i = 0;
i < count;
i++)
1713 imode =
s->blk_info[cu.
blk_pos].imode;
1715 int off = ypos *
frame->linesize[0] + xpos;
1720 for (
int plane = 1; plane < 3; plane++) {
1721 int off = (ypos >> 1) *
frame->linesize[plane] + (xpos >> 1);
1730 mv_pos = mv_y *
s->blk_stride + mv_x;
1732 for (
int part_no = 0; part_no < count; part_no++) {
1737 mv =
s->blk_info[mv_pos].mv;
1744 if (!(
mv.mvref & 2)) {
1745 if (!
s->last_frame[
LAST_PIC]->data[0]) {
1751 if (!
s->last_frame[
NEXT_PIC]->data[0]) {
1782 else if (
size >= 32)
1784 else if (
size == 16)
1792 cu_pos = ((xpos & 63) >> 3) + ((ypos & 63) >> 3) * 8;
1796 subset = is_intra ? 0 : 2;
1801 for (
int y = 0; y < 4; y++)
1802 for (
int x = 0; x < 4; x++) {
1804 if ((cbp16 >>
i) & 1) {
1805 int off = (ypos + y * 4)*
frame->linesize[0] + xpos + x * 4;
1807 thread->
coded_blk[cu_pos + (y/2)*8 + (x/2)] = 1;
1810 for (
int y = 0; y < 2; y++)
1811 for (
int x = 0; x < 2; x++) {
1813 int xoff = (xpos >> 1) + x * 4;
1814 int yoff = (ypos >> 1) + y * 4;
1815 if ((cbp16 >> (16 +
i)) & 1) {
1816 int off = yoff *
frame->linesize[1] + xoff;
1818 thread->
coded_blk[cu_pos + y*8 + x] = 1;
1820 if ((cbp16 >> (20 +
i)) & 1) {
1821 int off = yoff *
frame->linesize[2] + xoff;
1823 thread->
coded_blk[cu_pos + y*8 + x] = 1;
1831 decode_cu_8x8(gb, is_intra, qp, sel_qp, y_coeffs, u_coeffs, v_coeffs, cbp8, 1);
1833 for (
int i = 0;
i < 4;
i++) {
1834 int xoff = (
i & 1) << 2;
1835 int yoff = (
i & 2) << 1;
1837 int off = (ypos + yoff) *
frame->linesize[0] + xpos + xoff;
1838 int imode =
s->blk_info[cu.
blk_pos + (
i >> 1) *
s->blk_stride + (
i & 1)].imode;
1843 if ((cbp8 >>
i) & 1) {
1844 int off = (ypos + yoff) *
frame->linesize[0] + xpos + xoff;
1848 if ((cbp8 >> 4) & 1) {
1849 int off = (ypos >> 1) *
frame->linesize[1] + (xpos >> 1);
1852 if ((cbp8 >> 5) & 1) {
1853 int off = (ypos >> 1) *
frame->linesize[2] + (xpos >> 1);
1859 subset = is_intra ? 1 : 3;
1863 decode_cu_8x8(gb, is_intra, qp, sel_qp, y_coeffs, u_coeffs, v_coeffs, cbp8, 0);
1865 int off = ypos *
frame->linesize[0] + xpos;
1868 if ((cbp8 >> 4) & 1) {
1869 int off = (ypos >> 1) *
frame->linesize[1] + (xpos >> 1);
1872 if ((cbp8 >> 5) & 1) {
1873 int off = (ypos >> 1) *
frame->linesize[2] + (xpos >> 1);
1879 subset = is_intra ? 1 : 3;
1880 num_clusters =
size >> 4;
1881 cl_cbp =
get_bits(gb, num_clusters * num_clusters);
1882 for (
int y = 0; y < num_clusters; y++) {
1883 for (
int x = 0; x < num_clusters; x++) {
1884 if (!((cl_cbp >> (y*num_clusters + x)) & 1))
1886 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 0] = 1;
1887 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 1] = 1;
1888 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 8] = 1;
1889 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 9] = 1;
1892 decode_cu_16x16(gb, is_intra, qp, sel_qp, y_coeffs, u_coeffs, v_coeffs, super_cbp);
1893 if (super_cbp & 0xFFFF) {
1894 int off = (ypos + y * 16) *
frame->linesize[0] + xpos + x * 16;
1897 if ((super_cbp >> 16) & 0xF) {
1898 int off = ((ypos >> 1) + y * 8) *
frame->linesize[1] + (xpos >> 1) + x * 8;
1901 if ((super_cbp >> 20) & 0xF) {
1902 int off = ((ypos >> 1) + y * 8) *
frame->linesize[2] + (xpos >> 1) + x * 8;
1916 return (ypos >> 2) *
s->dblk_stride + (xpos >> 2);
1922 int dsize =
size >> 2;
1923 int dval = (q << 2) + strength;
1925 for (
int x = 0; x < dsize; x++) {
1926 s->top_str[
pos + x] = dval;
1927 s->top_str[
pos + (dsize - 1)*
s->dblk_stride + x] = dval;
1930 for (
int y = 0; y < dsize; y++) {
1931 s->left_str[
pos + y*
s->dblk_stride] = dval;
1932 s->left_str[
pos + y*
s->dblk_stride + dsize - 1] = dval;
1938 return s->top_str[
pos] & 3;
1943 return s->left_str[
pos] & 3;
1948 s->top_str[
pos] |= strength;
1953 s->left_str[
pos] |= strength;
1958 int blk_pos = (ypos >> 2) *
s->blk_stride + (xpos >> 2);
1961 for (
int i = 0;
i <
size;
i++)
1965 for (
int i = 0;
i <
size;
i++)
1970 #define STRENGTH(el, lim) (FFABS(el) < (lim) ? 3 : 1)
1971 #define CLIP_SYMM(a, b) av_clip(a, -(b), b)
1975 int16_t diff_q1q0[4];
1976 int16_t diff_p1p0[4];
1977 int str_p, str_q, msum, maxprod, weak;
1979 for (
int i = 0;
i < 4;
i++) {
1984 str_p =
STRENGTH(diff_q1q0[0] + diff_q1q0[1] + diff_q1q0[2] + diff_q1q0[3], lim2);
1985 str_q =
STRENGTH(diff_p1p0[0] + diff_p1p0[1] + diff_p1p0[2] + diff_p1p0[3], lim2);
1987 if (str_p + str_q <= 2)
1990 msum = (mode1 + mode2 + str_q + str_p) >> 1;
1991 if (str_q == 1 || str_p == 1) {
1999 for (
int y = 0; y < 4; y++) {
2002 if (diff_p0q0 &&
result <= maxprod) {
2009 int diff_strg = (
dst[-2*
step] -
dst[
step] + 4 * diff_p0q0 + 4) >> 3;
2014 if (str_p != 1 &&
FFABS(diff_q1q2) <= (lim2 >> 2)) {
2015 int diff = (diff_q1q0[y] + diff_q1q2 -
delta) >> 1;
2019 if (str_q != 1 &&
FFABS(diff_p1p2) <= (lim2 >> 2)) {
2020 int diff = (diff_p1p0[y] + diff_p1p2 +
delta) >> 1;
2033 int str_q =
STRENGTH(diff_q, lim2);
2034 int str_p =
STRENGTH(diff_p, lim2);
2035 int msum, maxprod, weak;
2037 if (str_p + str_q <= 2)
2040 msum = (mode1 + mode2 + str_q + str_p) >> 1;
2041 if (str_q == 1 || str_p == 1) {
2049 for (
int y = 0; y < 2; y++) {
2052 if (diff_pq &&
result <= maxprod) {
2057 int diff_strg = (
dst[-2*
step] -
dst[
step] + 4 * diff_pq + 4) >> 3;
2069 int qp_l = dblk_l >> 2;
2070 int str_l = dblk_l & 3;
2071 int qp_r = dblk_r >> 2;
2072 int str_r = dblk_r & 3;
2075 int mode_l = str_l ? dl_l[str_l - 1] : 0;
2076 int mode_r = str_r ? dl_r[str_r - 1] : 0;
2078 int lim2 = dl_r[3] * 4;
2081 if ((str_l | str_r) >= 2 && deblock_chroma)
2082 for (
int plane = 1; plane < 3; plane++)
2088 int qp_t = dblk_t >> 2;
2089 int str_t = dblk_t & 3;
2090 int qp_d = dblk_d >> 2;
2091 int str_d = dblk_d & 3;
2094 int mode_t = str_t ? dl_t[str_t - 1] : 0;
2095 int mode_d = str_d ? dl_d[str_d - 1] : 0;
2097 int lim2 = dl_d[3] * 4;
2100 if ((str_t | str_d) >= 2 && deblock_chroma)
2101 for (
int plane = 1; plane < 3; plane++)
2109 int str_l =
s->left_str[dblkpos -
s->dblk_stride - 1];
2110 int str_r =
s->left_str[dblkpos -
s->dblk_stride];
2111 if ((str_l | str_r) & 3)
2115 int str_l =
s->left_str[dblkpos - 1];
2116 int str_r =
s->left_str[dblkpos];
2117 if ((str_l | str_r) & 3)
2120 if (ypos + 8 >=
s->aheight) {
2121 int str_l =
s->left_str[dblkpos +
s->dblk_stride - 1];
2122 int str_r =
s->left_str[dblkpos +
s->dblk_stride];
2123 if ((str_l | str_r) & 3)
2129 int str_t =
s->top_str[dblkpos -
s->dblk_stride - 1];
2130 int str_d =
s->top_str[dblkpos - 1];
2131 if ((str_t | str_d) & 3)
2135 int str_t =
s->top_str[dblkpos -
s->dblk_stride];
2136 int str_d =
s->top_str[dblkpos];
2137 if ((str_t | str_d) & 3)
2140 if (xpos + 8 >=
s->awidth) {
2141 int str_t =
s->top_str[dblkpos -
s->dblk_stride + 1];
2142 int str_d =
s->top_str[dblkpos + 1];
2143 if ((str_t | str_d) & 3)
2151 for (
int x = 0; x < size >> 3; x++)
2154 for (
int y = 1; y < size >> 3; y++)
2160 int pu_pos, tsize, ntiles;
2163 if (xpos >=
s->awidth || ypos >=
s->aheight)
2167 int hsize = 1 << (log_size - 1);
2176 pu_pos = (ypos >> 3) *
s->pu_stride + (xpos >> 3);
2177 cu_type =
s->pu_info[pu_pos].cu_type;
2179 case 3: tsize = 3;
break;
2180 case 4: tsize = cu_type &&
s->pu_info[pu_pos].pu_type ? 3 : 4;
break;
2182 case 6: tsize = 4;
break;
2184 ntiles = 1 << (log_size - tsize);
2186 for (
int ty = 0; ty < ntiles; ty++)
2187 for (
int tx = 0; tx < ntiles; tx++) {
2188 int x = xpos + (tx << tsize);
2189 int y = ypos + (ty << tsize);
2190 int cu_pos = ((y & 63) >> 3) * 8 + ((x & 63) >> 3);
2209 switch (qp_off_type) {
2214 return val != 2 ?
val : -1;
2222 return -((
val & 1) + 1);
2230 case 1:
return qp <= 25 ? qp + 5 : qp;
2247 int qp, sel_qp,
ret;
2259 for (
int cu_x = 0; cu_x <
s->cu_width; cu_x++) {
2298 if (avpkt->
size == 0) {
2306 if (avpkt->
size < 9)
2309 header_size = avpkt->
data[0] * 8 + 9;
2310 if (avpkt->
size < header_size)
2333 s->last_frame[
CUR_PIC]->pict_type =
s->pict_type;
2340 if (!
s->last_frame[
CUR_PIC]->data[0])
2349 for (
int i = 0;
i <
s->cu_height;
i++) {
2350 if (header_size + ofs >= avpkt->
size)
2352 s->slice[
i].data = avpkt->
data + header_size + ofs;
2353 s->slice[
i].data_size =
FFMIN(
s->slice[
i].size, avpkt->
size - header_size - ofs);
2354 ofs +=
s->slice[
i].size;
2366 else if (
s->last_frame[
LAST_PIC]->data[0])
2380 s->ref_pts[0] =
s->ref_pts[1];
2381 s->ref_pts[1] = avpkt->
pts;
2383 s->ref_ts[0] =
s->ref_ts[1];
2384 s->ref_ts[1] =
s->ts;
2386 if (
s->ref_pts[1] >
s->ref_pts[0] &&
s->ref_ts[1] >
s->ref_ts[0])
2387 s->ts_scale = (
s->ref_pts[1] -
s->ref_pts[0]) / (
s->ref_ts[1] -
s->ref_ts[0]);
2389 frame->pts =
s->ref_pts[0] + (
s->ts -
s->ref_ts[0]) *
s->ts_scale;
2399 for (
int i = 0;
i < 3;
i++)
2407 for (
int i = 0;
i < 3;
i++)
2416 for (
int i = 0;
i <
s->nb_progress;
i++)
static void fill_mv_skip_cand(RV60Context *s, const CUContext *cu, unique_list_mvinfo *skip_cand, int size)
static void filter_luma_edge(uint8_t *dst, int step, int stride, int mode1, int mode2, int lim1, int lim2)
static const uint8_t skip_mv_ref[4]
#define AV_LOG_WARNING
Something somehow does not look correct.
static void decode_2x2_dc(GetBitContext *gb, const CoeffVLCs *vlcs, int16_t *coeffs, int stride, int block2, int dsc, int q_dc, int q_ac)
void ff_thread_progress_report(ThreadProgress *pro, int n)
This function is a no-op in no-op mode; otherwise it notifies other threads that a certain level of p...
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static void rv60_flush(AVCodecContext *avctx)
static int pu_is_intra(const PUInfo *pu)
ThreadProgress is an API to easily notify other threads about progress of any kind as long as it can ...
static int deblock_get_top_strength(const RV60Context *s, int pos)
static void deblock(const RV60Context *s, AVFrame *frame, int xpos, int ypos, int size, int dpos)
static int pred_angle(const IntraPredContext *p, uint8_t *dst, int stride, int size, int imode, int filter)
void ff_rv60_idct8x8_add(const int16_t *block, uint8_t *dst, int dst_stride)
static void read_mv(GetBitContext *gb, MV *mv)
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
static void decode_cu_16x16(GetBitContext *gb, int is_intra, int qp, int sel_qp, int16_t *y_coeffs, int16_t *u_coeffs, int16_t *v_coeffs, int ccbp)
static const int8_t mv[256][2]
#define FILTER_BLOCK(dst, dst_stride, src, src_stride, src_y_ofs, w, h, cond, step)
static int get_bits_count(const GetBitContext *s)
static void deblock_edge_ver(AVFrame *frame, int xpos, int ypos, int dblk_l, int dblk_r, int deblock_chroma)
static const VLCElem * cbp8_vlc[7][4]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
static av_cold void rv60_init_static_data(void)
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
static int mvinfo_matches_forward(const MVInfo *a, const MVInfo *b)
static void mc(RV60Context *s, uint8_t *frame_data[3], int frame_linesize[3], const AVFrame *ref, int x, int y, int w, int h, MV mv, int avg)
static void filter_weak(uint8_t *dst, const uint8_t *src, int size)
const FFCodec ff_rv60_decoder
void(* filter)(uint8_t *src, int stride, int qscale)
static const uint8_t rv60_cbp8_lens[7][4][64]
static int update_dimensions_clear_info(RV60Context *s, int width, int height)
static void decode_4x4_block(GetBitContext *gb, const CoeffVLCs *vlcs, int is_luma, int16_t *coeffs, int stride, int q_ac)
static void decode_cu_4x4in16x16(GetBitContext *gb, int is_intra, int qp, int sel_qp, int16_t *y_coeffs, int16_t *u_coeffs, int16_t *v_coeffs, int cbp)
static int ipm_compar(const void *a, const void *b)
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int deblock_get_pos(RV60Context *s, int xpos, int ypos)
static int deblock_get_left_strength(const RV60Context *s, int pos)
static void populate_ipred(const RV60Context *s, CUContext *cu, const uint8_t *src, int stride, int xoff, int yoff, int size, int is_luma)
uint8_t avg_buffer[64 *64+32 *32 *2]
static void skip_bits(GetBitContext *s, int n)
static av_cold void close(AVCodecParserContext *s)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static int has_left_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
AVCodec p
The public AVCodec.
enum AVDiscard skip_frame
Skip decoding for selected frames.
static void deblock_set_top_strength(RV60Context *s, int pos, int strength)
static int get_skip_mv_index(enum MVRefEnum mvref)
static void deblock_edge_hor(AVFrame *frame, int xpos, int ypos, int dblk_t, int dblk_d, int deblock_chroma)
const h264_weight_func weight
static double val(void *priv, double ch)
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
static void get_mv_dimensions(Dimensions *dim, enum PUType pu_type, int part_no, int size)
static void pred_plane(const IntraPredContext *p, uint8_t *dst, int stride, int size)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
static void derive_deblock_strength(RV60Context *s, int xpos, int ypos, int size)
static int ff_thread_once(char *control, void(*routine)(void))
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static int quant(int v, int q)
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
For static VLCs, the number of bits can often be hardcoded at each get_vlc2() callsite.
static int decode_slice(AVCodecContext *avctx, void *tdata, int cu_y, int threadnr)
#define FF_CODEC_DECODE_CB(func)
static const uint8_t rv60_deblock_limits[32][4]
void * av_realloc_array(void *ptr, size_t nmemb, size_t size)
static const uint8_t rv60_edge2[4]
uint8_t cu_split[1+4+16+64]
#define MK_UNIQUELIST(name, type, max_size)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static const uint8_t rv60_cbp16_lens[7][3][4][64]
static void predict_mv(const RV60Context *s, MVInfo *dst, int mv_x, int mv_y, int mv_w, const MVInfo *src)
static int mv_is_forward(enum MVRefEnum mvref)
static const uint8_t rv60_ipred_angle[9]
static int mv_is_ref0(enum MVRefEnum mvref)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
static void mv_pred(MV *ret, MV a, MV b, MV c)
static void deblock8x8(const RV60Context *s, AVFrame *frame, int xpos, int ypos, int dblkpos)
#define CODEC_LONG_NAME(str)
static int read_frame_header(RV60Context *s, GetBitContext *gb, int *width, int *height)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
@ AVDISCARD_ALL
discard all
static void decode_4x4_block_dc(GetBitContext *gb, const CoeffVLCs *vlcs, int is_luma, int16_t *coeffs, int stride, int q_dc, int q_ac)
static void ipred_init(IntraPredContext *i)
void ff_thread_progress_await(const ThreadProgress *pro_c, int n)
This function is a no-op in no-op mode; otherwise it waits until other threads have reached a certain...
static int mvinfo_is_deblock_cand(const MVInfo *a, const MVInfo *b)
and forward the result(frame or status change) to the corresponding input. If nothing is possible
static int decode_cu_r(RV60Context *s, AVFrame *frame, ThreadContext *thread, GetBitContext *gb, int xpos, int ypos, int log_size, int qp, int sel_qp)
static const uint8_t rv60_chroma_quant_ac[32]
static int has_ver_split(enum PUType pu_type)
static VLCElem table_data[129148]
static unsigned int get_bits1(GetBitContext *s)
@ AV_PICTURE_TYPE_I
Intra.
static int read_slice_sizes(RV60Context *s, GetBitContext *gb)
static int has_hor_split(enum PUType pu_type)
static void decode_2x2(GetBitContext *gb, const CoeffVLCs *vlcs, int16_t *coeffs, int stride, int block2, int dsc, int q_ac)
static int has_top_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
static const uint8_t rv60_dsc_to_lx[][4]
static const VLCElem * cbp16_vlc[7][4][4]
static const VLCElem * gen_vlc(const uint8_t *bits, int size, VLCInitState *state)
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
static const CoeffLens rv60_intra_lens[5]
static void luma_mc(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h, int cx, int cy)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static void pred_dc(const IntraPredContext *p, uint8_t *dst, int stride, int size, int filter)
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
static void read_mv_info(RV60Context *s, GetBitContext *gb, MVInfo *mvinfo, int size, enum PUType pu_type)
@ AVDISCARD_NONKEY
discard all frames except keyframes
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
int(* init)(AVBSFContext *ctx)
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static const uint8_t rv60_avail_mask[64]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
static const uint16_t rv60_ipred_inv_angle[9]
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
static void filter_bilin32(uint8_t *dst, int v0, int v1, int size)
static void build_coeff_vlc(const CoeffLens *lens, CoeffVLCs *vlc, int count, VLCInitState *state)
static int shift(int a, int b)
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
static int rv60_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
static int pu_type_num_parts(enum PUType pu_type)
static void add_if_valid(unique_list_mvinfo *skip_cand, const MVInfo *mvi)
static int get_interleaved_se_golomb(GetBitContext *gb)
static const CoeffLens rv60_inter_lens[7]
static void chroma_mc(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h, int x, int y)
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
static void filter_chroma_edge(uint8_t *dst, int step, int stride, int mode1, int mode2, int lim1, int lim2)
static av_cold int rv60_decode_end(AVCodecContext *avctx)
@ AV_PICTURE_TYPE_NONE
Undefined.
FrameData * frame_data(AVFrame *frame)
Get our axiliary frame data attached to the frame, allocating it if needed.
static av_always_inline int diff(const struct color_info *a, const struct color_info *b, const int trans_thresh)
static char * split(char *message, char delim)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
int av_reallocp_array(void *ptr, size_t nmemb, size_t size)
Allocate, reallocate an array through a pointer to a pointer.
static CoeffVLCs intra_coeff_vlc[5]
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static void pred_hor_angle(uint8_t *dst, int stride, int size, int weight, const uint8_t *src)
struct ThreadProgress * progress
static void skip_bits1(GetBitContext *s)
static void deblock_cu_r(RV60Context *s, AVFrame *frame, ThreadContext *thread, int xpos, int ypos, int log_size, int qp)
static int calc_sel_qp(int osvquant, int qp)
static int read_intra_mode(GetBitContext *gb, int *param)
#define AV_LOG_INFO
Standard information.
static int decode_super_cbp(GetBitContext *gb, const VLCElem *vlc[4])
#define STRENGTH(el, lim)
static const uint8_t rv60_candidate_intra_angles[6]
static int decode_cbp8(GetBitContext *gb, int subset, int qp)
#define i(width, name, range_min, range_max)
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
static int has_left_down_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
av_cold int ff_thread_progress_init(ThreadProgress *pro, int init_mode)
Initialize a ThreadProgress.
void av_frame_move_ref(AVFrame *dst, AVFrame *src)
Move everything contained in src to dst and reset src.
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
static int has_top_right_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
static void avg(AVFrame *frame, uint8_t *prev_frame_data[3], int prev_frame_linesize[3], int x, int y, int w, int h)
const char * name
Name of the codec implementation.
void ff_rv60_idct4x4_add(const int16_t *block, uint8_t *dst, int dst_stride)
static void pred_ver_angle(uint8_t *dst, int stride, int size, int weight, const uint8_t *src)
static av_cold int rv60_decode_init(AVCodecContext *avctx)
static int decode_coeff(GetBitContext *gb, const CoeffVLCs *vlcs, int inval, int val)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
static int mv_is_backward(enum MVRefEnum mvref)
static int reconstruct_intra(const RV60Context *s, const CUContext *cu, int size, int sub)
static int mvinfo_matches_backward(const MVInfo *a, const MVInfo *b)
#define FFSWAP(type, a, b)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static int progress_init(RV60Context *s, unsigned count)
static const uint8_t * align_get_bits(GetBitContext *s)
static CoeffVLCs inter_coeff_vlc[7]
av_cold void ff_thread_progress_destroy(ThreadProgress *pro)
Destroy a ThreadProgress.
static int decode_cbp16(GetBitContext *gb, int subset, int qp)
main external API structure.
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
static void get_next_mv(const RV60Context *s, const Dimensions *dim, enum PUType pu_type, int part_no, int *mv_pos, int *mv_x, int *mv_y)
static int ref[MAX_W *MAX_W]
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static void ff_thread_progress_reset(ThreadProgress *pro)
Reset the ThreadProgress.progress counter; must only be called if the ThreadProgress is not in use in...
static void deblock_set_strength(RV60Context *s, int xpos, int ypos, int size, int q, int strength)
@ AV_PICTURE_TYPE_P
Predicted.
static const VLCElem * ff_vlc_init_tables(VLCInitState *state, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, int flags)
static void deblock_set_left_strength(RV60Context *s, int pos, int strength)
static const uint8_t rv60_chroma_quant_dc[32]
static int read_qp_offset(GetBitContext *gb, int qp_off_type)
static int read_code012(GetBitContext *gb)
static int check_pos(int x, int y, int cw, int ch, int w, int h, int dx, int dy, int e0, int e1, int e2, int e3)
static const uint8_t rv60_qp_to_idx[64]
#define VLC_INIT_STATE(_table)
static int get_c4x4_set(int qp, int is_intra)
This structure stores compressed data.
static void avg_plane(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h)
void ff_rv60_idct16x16_add(const int16_t *block, uint8_t *dst, int dst_stride)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static void decode_cu_8x8(GetBitContext *gb, int is_intra, int qp, int sel_qp, int16_t *y_coeffs, int16_t *u_coeffs, int16_t *v_coeffs, int ccbp, int mode4x4)
@ AVDISCARD_NONREF
discard all non reference
static const uint8_t rv60_edge1[4]
static void reconstruct(RV60Context *s, const CUContext *cu, int size)
static const int8_t frame_types[4]
static const uint16_t rv60_quants_b[32]